
Cracking Oxford Advanced Learner’s
Dictionary

(CD-COPS 1.8)

by

macilaci

2

Introduction

There‘s always some inroduction. This time it is about a CD protection. In general
I don‘t like them. Most of these copy – schemes are defeated in times when the burners are
burning RAW mode. One may think, that there‘s no effective way to protect their products.

Tools used

 CDCops when not using Icedump disables softice’s keyboard and inside code is a link
of checksums, so using breakpoint on execution makes things difficult. Advices: bpm, bpr,
bpx on API+some bytes.

Essays: mclallo‘s and Laptonic‘s both concerning CDCops protection in earlier
vesions

Disassemblers: IDA, WDasm
Debuggers: WinICE, Icedump
Other tools: Wdump 95
Assembler: Masm

These and many other tools can be found on various sites. You can use search engine to find
them (www.google.com, www.altavista.com).

The essay

I doubt You will find this CD on some warez sites, since it is a educational CD. I just
wanted to make a copy of this disc and I realised that copy protection is not working with my
copy. I begun searching the web: found some silly information, that this protection measures
the angle between first and last sector on the CD, does the encryption test and refuses or
accepts the CD. Some people claim that these CD‘s are copyable by certain CD-R brands like
Kodak Gold. I haven‘t tried this possibility. So my goal was to make this application working.
The fig.1 shows the rejected copy. We will talk abou the machine code later.

Fig.1

3

Concerning the above mentioned essays I looked at the executables and my surprise
was that the qz_ executable on the CD was an visual basic application. This could mean, that
the program each time it runs, it decrypts itself with the given key. This key has nothing to do
with the entered product number. The CD product number or whatever call they it is just
a number for a given CD to pass the encryption test.

Eleven encrypted sections, who wants more?

Looking at the main loader executable within Wdasm I wondered how are times
changing. At the version 1.8 there are eleven references to CD-Cops Ord3 call. Each call has
behind himself one encrypted section of data.

With a bunch of bpr‘s (see softice‘s manual) I started looking at these bytes. This data
section is decrypted by the dll with rotating key, which is not depending on the data itself.
Each section has two checksums, first is the checksum of the data itself, second is the
checksum of the checksum. The checksums are coputed many times within the dll and the
main executable, so patching the executable will result in an ugly crash within INT31. The
execution simply jumps through some calls and operations to be made. Using the DPMI
services also makes life difficult on the emulator like VMWare or VirtualPC.

So patching the executable isn‘t good way, even when all to do is to patch few bytes
inside the main file as you will see below.

The Registry Story

As I tried to figure out more on this program I was experimenting with the program.
Just doing simple CTRL+D within the CD-ROM measuring resulted into a running program.
I wondered how could be this possible. Of course you’ll have to enter a key that starts the
‘encryption test’. Simple delay between reading from CD-ROM and the main program tricked
to run the program. After that the application stores its information within registry in these
keys (in the HKLM too):

HKEY_CLASSES_ROOT\OXFORD___ALD002OU_2241000
@="AABBCCDD/AABBCCDD"

HKEY_CLASSES_ROOT\OXFORD___ALD002OU_2241000.CRC
@="06B8BE09“

As it turns out, the crc key is not life important, so the application runs without it. The HKLM
keys are just in case of data lost or something like that. The most important is the first
mentioned key. I tried it to copy to another machine, but that simply refused the key as in
fig.1 – the CD passed not the encryption test. So this key must be machine dependent.

Dumping and code understanding

First we have to look at the executable – it is a 16-bit application. There aren‘t many
sixteen bit dumpers for Windows 9x, so I personally tried the Wdump v2.10 (fig.2). Use of
this dumper is quite easy. It allocates memory space and associates this memory space to file.
Using Softice‘s move (m) command it is possible to move code pieces to this memory space
and then save it to file. Beware: when starting your debuggnig session, always start Icedump
because of anti-Softice code disabling keyboard.

4

Fig.2

The first reference to CDCops is at 0001:0fb7:

cseg01:0FB7 call CDCOPS_3
cseg01:0FBC db 6Dh
cseg01:0FBD db 24h
cseg01:0FBE db 9 ;

So lets do a break on the 0001:0fb7. First do a break on the window‘s procedure at 0001:0e30.
Tip: Use winice‘s log capabilities to locate the segment 01 of the executable within memory
space.
Example (from winice history log):

WINICE: Load16 Sel=555F Seg=0001 Mod=WINASM - here we go
WINICE: Load16 Sel=53E7 Seg=0002 Mod=WINASM
WINICE: StartDLL CSIP=4DEF:0B6F Mod=CDCOPS
Break due to BPMB #555F:00000FDC X DR3 - I‘ve already set this breakpoint
 MSR LastBranchFromIp=00000A62
 MSR LastBranchToIp=00000A6A
:?1192-fb7 -how long is our section?
������'%���������������� �
:? 13c8-fb7
00000411 0000001041 "¯ł" -better get more
:m 555f:0fb7 l 411 030:82f0e000 -move it to Wdump‘s memory
space
:d 0030:82f0e000 -let me see if it is there

Bold marked string is what I wrote in winice. So we have a new file with 411 bytes inside.
Start up hexeditor and paste that code into appropriate space within the executable. When
done, start up IDA and look around.

5

So this way I‘ve got four new sections inside my executable. Next we will explore the registry
values. Doing a bpx on shell!regqueryvalue function will show us how many times it reads
registry. I explored the parameters and values and searched for our favourite registry key. At
the second time when the breakpoint occurs, you will get to this routine:

cseg01:131E push 26Dh
cseg01:1321 push ds
cseg01:1322 push 3E5Eh
cseg01:1325 push ds
cseg01:1326 push 2B8h
cseg01:1329 call dword ptr ds:0EA6h ;shell!regqueryvalue
cseg01:132D or ax, dx
cseg01:132F jnz loc_0_13C8
cseg01:1333 mov ah, 0FFh
cseg01:1335 mov si, 3E5Eh
cseg01:1338 mov di, ds
cseg01:133A mov es, di
cseg01:133C mov di, 3E4Ah
cseg01:133F inc ah
cseg01:1341 cld
cseg01:1342 lodsb ;load the string
cseg01:1343 cmp al, 2Fh ; ’/’ ;look for slash
cseg01:1345 jz loc_0_1338
cseg01:1347 stosb ;store it to new location
cseg01:1348 or al, al
cseg01:134A jnz loc_0_1342
cseg01:134C or ah, ah
cseg01:134E jz loc_0_13C0
cseg01:1350 mov si, 3E4Ah
cseg01:1353 mov cx, 8
cseg01:1356 lodsb
cseg01:1357 cmp al, 61h ; ’a’
cseg01:1359 jb loc_0_135D
.
.
.
cseg01:136D shl edx, 4 ;get the hex string to edx
cseg01:1371 or dl, al
cseg01:1373 loop loc_0_1356 ;got it all?
cseg01:1375 lodsb
cseg01:1376 or al, al
cseg01:1378 jnz loc_0_13C8
cseg01:137A mov cx, 10h ;we will do it ten times
cseg01:137D xor ax, ax
cseg01:137F xor bx, bx ;zero ax and bx
cseg01:1381 shr edx, 1 ;shift right edx
cseg01:1384 rcr bx, 1 ;rotate through carry flag
cseg01:1386 shr edx, 1 ;shift right edx
cseg01:1389 rcl ax, 1 ;rotate through carry flag
cseg01:138B loop loc_0_1381 ;next man
cseg01:138D sub ax, ds:3DFFh ;sutract with key1
cseg01:1391 xor ax, ds:2B6h ;xor with key2
cseg01:1395 add bx, ds:3DFFh
cseg01:1399 xor bx, ds:2B6h
cseg01:139D cmp ax, bx ; is that code valid?
cseg01:139F jnz loc_0_13C8 ;if no then jump
cseg01:13A1 mov word ptr ds:3E13h, 3 ; yes, it is...
cseg01:13A7 mov ds:187Fh, al ;store the computed
machine code low byte

6

cseg01:13AA mov ds:1881h, ah ;store the computed
machine code high byte
cseg01:13AE xor al, al ;keep execution
cseg01:13B0 mov ds:1883h, al

This subroutine computes the machinecode key (my was 4CCC) from the registry value. The
compare key is necessary to be sure that the key was computed using a given algorithm
(rotate through carry). Computed machine code is then stored for latter use by comparation
routine. With bpm on the above addresses we will get to the second jump where the machine
code is compared to the real machine code:

4D07:2550 A07F18 MOV AL,[187F] ;get low byte
4D07:2553 8A268118 MOV AH,[1881] ;get high byte
4D07:2557 3B062A3E CMP AX,[3E2A] ;compare to real code
4D07:255B 0F849400 JZ 25F3 ;if good then jump
4D07:255F B104 MOV CL,04 ;bad guy
4D07:2561 E9D700 JMP 263B

In the program are now two jumps deciding whether the program is running on the good
machine or not. When the first is not set and the second is set, the program continues running
no matter what registry values are inside windows. I was trying to modify the jumps doing
a bunch of bprs over the encrypted code, but a lot of checksums and security code gave me
a better idea of defeating this protection scheme. Looking after the 3e2a memory area lead
me to this routine:

cseg01:355C push es
cseg01:355D cld
cseg01:355E mov ax, 2
cseg01:3561 mov bx, 0FFFFh
cseg01:3564 int 31h ; DPMI Services ax=func xxxxh
cseg01:3564 ; SEGMENT TO DESCRIPTOR
cseg01:3564 ; BX = real mode segment
cseg01:3564 ; Return: CF set on error

; CF clear if successful, AX = selector
corresponding to real mode segment (64K
limit)

cseg01:3566 jb loc_0_4240
cseg01:356A mov es, ax ; read bios date
cseg01:356C mov cx, 5
cseg01:356F mov si, 5
cseg01:3572 mov dx, 5873h ;set some initial value
cseg01:3575 mov ax, es:[si] ;get the date string
cseg01:3578 inc si
cseg01:3579 inc si
cseg01:357A xor dx, ax
cseg01:357C shr dx, 1
cseg01:357E add dx, ax
cseg01:3580 loop loc_0_3575 ;compute machinecode
cseg01:3582 and dx, 0FEFEh
cseg01:3586 mov word_429_3E2A, dx ;store at 3e2a
cseg01:358A pop es
cseg01:358B retn

Taking look at 356a on the es:[si] address told me that the machine code was computed from
bios date. So modifying the bios date would solve the problem...

7

BIOS Flash or what?

So the above things gave me the idea to compute the machine code and store it in the
registry. Below I will provide the source code for this utility (Compiled with masm32 as
a win32 command line utility):

; ###

 .386
 .model flat, stdcall
 option casemap :none ; case sensitive

; ###

 include \masm32\include\windows.inc

 include \masm32\include\user32.inc
 include \masm32\include\kernel32.inc
 include \masm32\include\masm32.inc
 include \masm32\include\advapi32.inc

 includelib \masm32\lib\advapi32.lib
 includelib \masm32\lib\user32.lib
 includelib \masm32\lib\kernel32.lib
 includelib \masm32\lib\masm32.lib

 ; ------------
 ; Local macros – used from masm32 examples
 ; ------------
 print MACRO Quoted_Text:VARARG
 LOCAL Txt
 .data
 Txt db Quoted_Text,0
 .code
 invoke StdOut,ADDR Txt
 ENDM

 input MACRO Quoted_Prompt_Text:VARARG
 LOCAL Txt
 LOCAL Buffer
 .data
 Txt db Quoted_Prompt_Text,0
 Buffer db 128 dup(?)
 .code
 invoke StdOut,ADDR Txt
 invoke StdIn,ADDR Buffer,LENGTHOF Buffer
 mov eax, offset Buffer
 ENDM

 cls MACRO
 invoke ClearScreen
 ENDM

 Main PROTO

; ###

 .data
 key1 dw 0BBB5h
 key2 dw 0C7DAh
 Buffer2 db 128 dup(0)
 Regkey db "OXFORD___ALD002OU_2241000\",0
 Fixed db " Your computer is now ok ",0
 ; ###

 .code

 start:
 invoke Main
 invoke ExitProcess,0

8

; ###
sub_0_1412 proc near ;part of converting routine from edx to ascII string
 and al, 0Fh
 add al, 90h
 daa
 adc al, 40h
 daa
 stosb
 retn
sub_0_1412 endp

sub_0_140A proc near ;part of converting routine from edx to ascII string
 push ax
 shr al, 4
 call sub_0_1412
 pop ax
 and al, 0Fh
 add al, 90h
 daa
 adc al, 40h
 daa
 stosb
 retn
sub_0_140A endp

sub_0_1403 proc near ;part of converting routine from edx to ascII string
 xchg al, ah
 call sub_0_140A
 xchg al, ah
 push ax
 shr al, 4
 call sub_0_1412
 pop ax
 and al, 0Fh
 add al, 90h
 daa
 adc al, 40h
 daa
 stosb
 retn
sub_0_1403 endp

SetRegString proc HKEY: dword, lpszKeyName: dword, lpszValueName: dword, lpszString: dword
;set the registry

 local Disp: dword
 local pKey: dword
 local dwSize: dword
 invoke RegCreateKeyEx, 80000000h,

 lpszKeyName, NULL, NULL,
 REG_OPTION_NON_VOLATILE,
 KEY_ALL_ACCESS, NULL,
 addr pKey, addr Disp
 .if eax == ERROR_SUCCESS
 invoke lstrlen, lpszString
 mov dwSize, eax
 invoke RegSetValueEx, pKey, lpszValueName,
 NULL, REG_SZ,
 lpszString, dwSize
 push eax
 invoke RegCloseKey, pKey
 pop eax
 .endif
 ret
SetRegString endp

Main proc

 LOCAL InputBuffer[128]:BYTE

 ; ------------

 cls
 print "CDCops 1.8 Oxford Advanced Learner’s Dictionary",13,10,13,10
 input "Enter Machine Code > "
 push edi
 push esi

9

 push edx
 push eax
 push ebx
 mov esi, eax ;covert machine code to hex number=edx
 mov edi, offset Buffer2
 mov ecx, 4
 loc_0_1356:
 lodsb
 cmp al, 61h ; ’a’
 jb loc_0_135D
 sub al, 20h ; ’ ’
 loc_0_135D:
 sub al, 30h ; ’0’
 jb loc_0_13C8
 cmp al, 9
 jbe loc_0_136D
 sub al, 7
 jb loc_0_13C8
 cmp al, 0Fh
 ja loc_0_13C8
 loc_0_136D:
 shl edx, 4
 or dl, al
 loop loc_0_1356
 lodsb ;up to this point

;key computing:
 mov ecx, 10h ;10 times loop
 xor eax, eax
 xor ebx, ebx
 loc_0_1381:
 mov ax, dx
 xor ax, key1 ; 2b6= B5 BB
 add ax, key2 ; 3dff= DA C7
 mov bx, dx
 xor bx, key1
 sub bx, key2
 xor edx, edx
 mov cx, 10h
loc_0_13E8:
 shr ax, 1
 rcl edx, 1 ;rotate through carry flag
 shl bx, 1
 rcl edx, 1 ;rotate through carry flag
 loop loc_0_13E8 ;the next man please
 cld ;the result is now in edx
 mov al, 2Fh ; ’/’
 mov edi, offset Buffer2 ;print it out to the buffer with the slash above
 stosb
 mov ax, dx
 shr edx, 10h
 xchg ax, dx
 call sub_0_1403
 xchg ax, dx
 xchg al, ah
 call sub_0_140A
 xchg al, ah
 push ax
 shr al, 4
 call sub_0_1412
 pop ax
 and al, 0Fh
 add al, 90h ; 'É'
 daa
 adc al, 40h ; '@'
 daa
 stosb
 pop ebx
 pop eax
 pop edx
 pop esi
 pop edi
 mov eax, offset Buffer2
 invoke SetRegString, 80000000h,offset Regkey,NULL,eax ;also fix the registry
automatically

 mov eax, offset Buffer2

10

 invoke StdOut, eax ; return address in eax
 invoke StdOut, offset Fixed
 ; ----------------
 ; using procedures
 ; ----------------

 loc_0_13C8:
 invoke StdIn,ADDR InputBuffer,LENGTHOF InputBuffer

 ret

Main endp

; ###

 end start

The main program code is not big – is quite simple was cut from the executable at
location 13CA. Program generates this code each time it runs and stores it in the registry.
How to use the console program gives itself. Just look at the source.

When you first time manage to run the original program with manipulating the above
mentioned jumps, the program sets the registry key and on the current machine will live
forever... I‘ve tried to fix the jumps, but almost got crazy when the dll was checking the
checksums of checksums and so on.

Conclusion

No one is perfect, neither the assembly protection used by linkdata security company.
Simple use of gettickcount within the CD-ROM encryption test shows the vulnerability of this
protection scheme. The BIOS date reading routine shows the need for 16-bit code within 32-
bit environment.
Exercise: Write an utility that computes the registry key from the bios date (eg. 07/11/01) and
stores it. When you manage to make it 16-bit code you can simply access the BIOS date by
the above code on page 6.

