
Cracking PCGuard Protected Aplications

by

macilaci

tsehp
Published
 by
 Tsehp
 2002

2

Introduction

The cracking is old as a programming. I think theré s no programmer who wasn´t just
for a while a cracker. Even when he was just curious what that program does, even when he
wanted to know what techniques are used by that software, he turns for a while to a cracker.
In general theré s no line or a border between programming and cracking as such. These
things are both components of computer science and cannot be divided.

Last time I visited some anti cracking site I saw a clause about a sharing knowledge.
Why are crackers sharing their knowledge and protectors not? Why there are many crackerś
sites – for free and for protectors not? The answer is simple: Because of motivations. The
protectors want to protect their (or theirs customers) applications against unauthorised use,
that means they have commercial interests. Their best weapon is a secrecy. Hidden files,
registry entries, algorithms, encryption – all this is here to maintain their secrecy. They don´t
share knowledge at that level as crackers because of commerce. And a commerce is a barrier
what in our world can´t be so easily bridged. That´s the reason why are protector companies
disappearing from the market.

And the main purpose of this document is to share knowledge.

Tools used

 The protection scheme – PCGuard is designed in such way, that it makes most of
known tools unusable or hardly usable.

Disassemblers: IDA
Debuggers: WinICE, Icedump
Other tools: Imprec – an import reconstructor
Monitoring tools: Filemon, Regmon
Assembler: Masm

These and many other tools can be found on various sites. You can use search engine to find
them (www.google.com, www.altavista.com).

The essay

This application can be downloaded from www.eeye.com site on request. Version used
in this essay is 3.8. The protection mechanism PCGuard is in version 4.05.

The protection consist of two independent layers. First is the PCGuard´s layer which is
set to 40 days after first run. After that period it will display an error message shown in fig 1.

Fig. 1

3

The second protection layer consist of some licensing mechanism. Using the registry
entries and some hidden files sets and maintains your license for 15 days. Even if you can
obtain some way a valid license number this program wil l work only for 40 days according to
layer one. After 15 day period the program will display a dialog box showing that your license
expired. After 40 days it will display only the shown message box.

Regmon, Filemon & Co.

Using Regmon and Filemon requires some experience in finding suspicious entries
such as hidden files and registry entries that are maintained by protection layers.
Layer one:

Let´s set the date beyond your 40 day trial period. Regmon and Filemon show us some
suspicious registry entries and a hidden file:

\windows\inst32ba.dll

HKEY_CLASSES_ROOT\{22622989-0F06453D-0A87DE3B}

When you delete this registry entry and the hidden file in your windows directory, the trial
period counts again from zero.
Layer two:

Experimentig with setting the time and running the program you may find following:

HKEY_LOCAL_MACHINE\Software\Acudata

\windows\1234-5678-9ABC-DEF1-2345\license.sls
\windows\1234-5678-9ABC-DEF1-2345\checkout.sls
\windows\1234-5678-9ABC-DEF1-2345\activeuser.sls
\windows\iris the network traffic analyzer.dat

and plus some hidden files:

\windows\system\winsusrx.dll
\windows\system\winsusrm.dll

Deleting above registry entry and above files restores your trial period.

WinICE and Icedump

The first layer contains some anti debugging tricks, so running without icedump is not
recommended.

Strategy: 1. To find the Original Entry Point (OEP)
2. Dump the Application
3. Restore and fix the import table
4. Cracking the Application

The most difficult thing to do is the first point. Since the protection layer has some
implemented protection mechanisms you have to be careful. Setting hardware breakpoints is
not recommended – it will result in an error and setting software breakpoints in some cases
causes error too. Rules to set these breakpoints are simple: Set only software breakpoints and
never set a breakpoint on API entry. I3HERE should be off..

4

First time I used some bpx on createwindowexa+some_bytes to set the breakpoint
inside the API. But it was too complicated. Second time I used msvcrt API function time.
Setting a breakpoint on time and F12 will take you back to iris at 004673C1. Scrolling the
winicé s code window upwards you can find the begin of this function at 00467040. Using the
stack and a bit of assembly knowledge you can locate the entry point at 0048054C.

There is an easier method to do this. Sipmly do a breakpoint inside msvcrt API
function __set_app_type and it will take you to the entry point routine at 00480579.

So the entry point was located at 0048054C. Doing a breakpoint on it and running the
application again we can finally dump the program. When winice pops up, clear all
breakpoints and with /pedump 400000 eip c:\iris.dmp command the application wil l be
dumped. Continue running the application.

 When you try to run the good old dumping tools for win32 gui (e.g. procdump), these
will simly fail because of modifying the process infos. You may get a two kB file with
nothing inside. And with a raw dump you will get an error when disassembling IDA,so theré s
need to reconstruct the PE format too. These are reasons why was the pedump command
chosen.

Imprec

The next step is the import table reconstruction. Inside winice locate the start and the
end of import table.

Next run Imprec and fil l in the found values : OEP 0008054C, RVA 0008B000,
Size 0000169C. Click on Get Imports and next on Auto Trace, since some entries are
unresolved. We see now that there are some invalid fi le thunks. To fix them click on show
invalid. Inside winice you will see at that address only garbage, so we can now cut these
thunks. Go on the invalid import entry and click on Cut thunk(s) as shown below in fig 2.

Fig.2

5

The valid thunks have reference only to one library. So locate next invalid thunk and find the
invalid entry with doing cut thunk on this until you will get all entries valid. Check the add
new section check box and click on Fix dump, locate the iris dump file and choose save. Done
with step 3.

IDA

The first layer of protection was removed, the next step is the second layer. Doing
a breakpoint on time function you will get to 004673C1 and a bit later to 00444A25 location.
Looking at the assembly we see following:

004673C1 call ds:time
004673C7 lea edx, [ebp+var_28]
004673CA push edx
004673CB call ds:localtime
004673D1 push eax
004673D2 call ds:asctime
004673D8 mov edi, eax
004673DA or ecx, 0FFFFFFFFh
004673DD xor eax, eax
.
.
00467453 lea ecx, [ebp+var_44]
00467456 lea edx, [ebp+var_528]
0046745C push ecx
0046745D push edx
0046745E call ds:StartLic
00467464 test eax, eax
00467466 jz loc_467AAF

and at 00444A25:

00444A25 call ds:time
00444A2B lea edx, [esp+160h+var_14C]
00444A2F push edx
00444A30 call ds:localtime
00444A36 push eax
00444A37 call ds:asctime
00444A3D mov edi, eax
00444A3F or ecx, 0FFFFFFFFh
00444A42 xor eax, eax
.
.
00444AB8 lea ecx, [esp+15Ch+var_144]
00444ABC push ecx
00444ABD call ds:HeartBeatUpdate
00444AC3 test eax, eax
00444AC5 jz loc_444B5C

Next question is: What are the Startlic and the HeartBeatUpdate functions? Both are tested
with eax, so it is just a eax=TRUE matter? Yes and no. Yes because when the license is valid
the function returns 1, no because it does not only that.

Startlic: Looking on the stack we will see that there is pushed fisrt some pointer to some bytes
and second is the structure with license number. Some bytes: as you´ll trace the program you
will see that these bytes are actually encrypted ascII date with simple xor:

00467437 mov al, [ebp+edx+var_44] ;read the byte
0046743B lea edi, [ebp+var_44]
0046743E xor al, 0EFh ; xor with 0xef
00467440 or ecx, 0FFFFFFFFh
00467443 mov [ebp+edx+var_44], al ;write next byte
00467447 xor eax, eax

6

00467449 inc edx
0046744A repne scasb
0046744C not ecx
0046744E dec ecx
0046744F cmp edx, ecx
00467451 jb short loc_467437 ;loop back

And after the Startlic it is decrypted and compared to the originally extracted date in ascII
format:

0046747D mov al, [ebp+edx+var_44] ;read byte
00467481 lea edi, [ebp+var_44]
00467484 xor al, 0CDh ; xor with cd
00467486 or ecx, 0FFFFFFFFh
00467489 mov [ebp+edx+var_44], al ;write byte
0046748D xor eax, eax
0046748F inc edx
00467490 repne scasb
00467492 not ecx
00467494 dec ecx
00467495 cmp edx, ecx
00467497 jb short loc_46747D ;loop back

At location 004674A2 is the date compared. So the program sends a challenge and should get
a proper response.
Heartbeatupdate: The same with this function. The only value that is pushed into the stack is
the pointer to challenge. This can be located at 000444ABD.

This gave me idea to emulate the whole library, so the new eeyelic.dll wil l be
created.Of course can be these locations patched, but the dll could be used together with the
protected application. The file is tamper proof, so this is andvantage (in case of virus attack).

Building the dll
The library should contain following functions: HeartBeatUpdate, StartWizard,

GetLicUserName, StartLic, GetMeter and GetMeteringType – these are imported by the
application and should contain a proper response function for the program. Below I will
provide the asm source of the dll :

 .386
.model flat,stdcall
option casemap:none
include \masm32\include\windows.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib

.data

.code
DllEntry proc hInstance:HINSTANCE, reason:DWORD, reserved1:DWORD

mov eax,TRUE
ret

DllEntry Endp

HeartBeatUpdate proc
push ebp
mov ebp, [esp+8]
mov edi, [esp+8]

 or ecx, 0FFFFFFFFh
 xor eax, eax
 xor edx, edx

repne scasb
 not ecx
 dec ecx

7

looop:
mov cl, [ebp+edx]

 mov edi, ebp
 xor cl, 022h
 xor eax, eax
 mov [ebp+edx], cl
 or ecx, 0FFFFFFFFh
 inc edx
 repne scasb
 not ecx
 dec ecx
 cmp edx, ecx
 jb looop

mov eax,1
pop ebp

 retn 4
HeartBeatUpdate endp

StartWizard proc

ret
StartWizard endp

GetLicUserName proc
retn 4

GetLicUserName endp

StartLic proc
push ebp
mov ebp, [esp+0ch]
mov edi, [esp+0ch]

 or ecx, 0FFFFFFFFh
 xor eax, eax
 xor edx, edx
 repne scasb
 not ecx
 dec ecx
laoop:

mov cl, [ebp+edx]
 mov edi, ebp
 xor cl, 022h
 xor eax, eax
 mov [ebp+edx], cl
 or ecx, 0FFFFFFFFh
 inc edx
 repne scasb
 not ecx
 dec ecx
 cmp edx, ecx
 jb laoop

mov eax,1
pop ebp
mov eax,1

 retn 8
StartLic endp

GetMeter proc
xor eax,eax
retn

GetMeter endp

GetMeteringType proc
xor eax,eax
ret

GetMeteringType endp
End DllEntry

8

The def file:

LIBRARY eeyelic
EXPORTS HeartBeatUpdate
EXPORTS StartWizard
EXPORTS GetLicUserName
EXPORTS StartLic
EXPORTS GetMeter
EXPORTS GetMeteringType

And the makefile:

\masm32\bin\ml /c /coff /Cp eeyelic.asm
\masm32\bin\Link /DLL /DEF:eeyelic.def /SUBSYSTEM:WINDOWS /LIBPATH: \masm32\lib eeyelic.obj

Conclusion

Although the application has two protection layers and the one is ́ crack proof´, the
protection can be still bypassed by a simple program which emulates the also PCGuard
protected dll .

Exercise: Write a loader for the main program that deletes the \windows\inst32ba.dll file
and HKEY_CLASSES_ROOT\{22622989-0F06453D-0A87DE3B} registry entry before starting the
iris.exe.

