Cracking PCGuard Protected Aplications

macilaci

Published

Iris™

I'he Network Traffiec Analyzer

tsehp
Published
 by
 Tsehp
 2002

Introduction

The aadking isold as a programming. | think there’s no programmer who wasn't just
for awhile acradker. Even when he was just curious what that program does, even when he
wanted to know what tedhniques are used by that software, he turns for awhile to a cradker.
In general there’s no line or a border between programming and cradking as such. These
things are both components of computer science and cannot be divided.

Last time| visited some anti cradking site | saw a clause @out a sharing knowledge.
Why are aaders sharing their knowledge and protectors not? Why there ae many cradkers’
sites— for free and for protectors not? The answer is simple: Becaise of motivations. The
protectors want to protect their (or theirs customers) applications against unauthorised use,
that means they have commercial interests. Their best wegoon is a secrecy. Hidden files,
registry entries, algorithms, encryption — all thisis here to maintain their seaecy. They don't
share knowledge & that level as craders becaise of commerce. And acommerceis abarrier
what in our world can’t be so easily bridged. That’s the reason why are protector companies
disappeaing from the market.

And the main pupose of this document is to share knowledge.

Tools used

The protection scheme — PCGuard is designed in such way, that it makes most of
known tools unusable or hardly usable.

Disassemblers: IDA

Debuggers. WinICE, Icedump

Other tools. Imprec— an import reconstructor

Monitoring tools. Filemon, Regmon

Assmbler: Masm
These and many other tools can be found on various sites. Y ou can use seach engineto find
them (www.google.com, www.altavista.com).

The essay

This application can be downloaded from www.eeye.com site on request. Version used
inthis essay is 3.8. The protection mechanism PCGuard isin version 4.05.

The protection consist of two independent layers. First isthe PCGuard’s layer which is
set to 40 dhys after first run. After that period it will display an error message shownin fig 1

Iric The Metwork Traffic Analyzer [

!! Dernonztration penod excesded

The second protection layer consist of some licensing mechanism. Using the registry
entries and some hidden files sts and maintains your license for 15 days. Even if you can
obtain some way avalid license number this program will work only for 40 days acarding to
layer one. After 15 day period the program will display adialog box showing that your license
expired. After 40 days it will display only the shown message box.

Regmon, Filemon & Co.

Using Regmon and Filemon requires sme experience in finding suspicious entries
such as hidden files and registry entries that are maintained by protection layers.
Layer one:

Let’s st the date beyond your 40 day trial period. Regmon and Filemon show us sme
suspicious registry entries and a hidden file:

\windows\inst32ba.dll

HKEY_CLASSES_ROOT\{22622989-0F06453D-0A87DE3B}

When you delete this registry entry and the hidden file in your windows direcory, the trial
period counts again from zero.
Layer two:

Experimentig with setting the time and running the program you may find following:

HKEY_LOCAL_MACHINE\Software\Acudata

\windows\1234-5678-9ABC-DEF1-2345\license.sls
\windows\1234-5678-9ABC-DEF1-2345\checkout.sls
\windows\1234-5678-9ABC-DEF1-2345\activeuser.sls
\windowsl\iris the network traffic analyzer.dat

and plus ©me hidden files:

\windows\system\winsusrx.dll
\windows\system\winsusrm.dll

Deleting above registry entry and above files restores your trial period.
WinI CE and I cedump

Thefirst layer contains sosme anti debugging tricks, so running without icedump is not
recommended.
Strategy: 1. To find the Original Entry Point (OEP)
2. Dump the Application
3. Restore and fix the import table
4. Cracking the Application
The most difficult thing to do isthe first point. Sincethe protection layer has sme
implemented protection mechanisms you have to be caeful. Setting hardware bregkpointsis
not recommended —it will result in an error and setting software bregkpoints in some caes
causes error too. Rulesto set these breakpoints are simple: Set only software breapoints and
never set a bregpoint on API entry. I3HERE should be off..

First time | used some bpx on createwindowexa+some_bytes to set the breapoint
inside the API. But it wastoo complicated. Second time | used msvcert API function time.
Setting a breakpoint on time and F12 will take you badk to irisat 00467%1. Scrolling the
winice’s code window upwards you can find the begin of this function at 00467040Using the
stack and a bit of assembly knowledge you can locate the entry point at 0048054.

There is an easier method to do this. Sipmly do a breapoint inside msvcrt AP
function __set app_type and it will take you to the entry point routine & 00480579

So the entry point was located at 0048054. Doing a bregpoint on it and running the
application again we an finally dump the program. When winice pops up, clea all
breapoints and with /pedump 400000 eip c:\iris.dmp command the gplication will be
dumped. Continue running the gplication.

When you try to run the good old dumping tools for win32 gui (e.g. procdump), these
will simly fail because of modifying the processinfos. Y ou may get atwo kB file with
nothing inside. And with araw dump you will get an error when disassembling IDA,so there’s
need to reconstruct the PE format too. These ae reasons why was the pedump command
chosen.

Imprec

The next step is the import table reconstruction. Inside winice locae the start and the
end of import table.

Next run Imprecand fill in the found values : OEP 0008054, RVA 00088000,
Size000016%. Click on Get Imports and next on Auto Trace since some entries are
unresolved. We seenow that there ae some invalid file thunks. To fix them click on show
invalid. Inside winice you will see & that addressonly garbage, so we can now cut these
thunks. Go onthe invalid import entry and click on Cut thunk(s) as shown below in fig 2

Import REConstructor v1.4.2+ [C) 2001-2002 MackT fuCF [=] Cf]
Amtach to an Active Process
Ic ‘prograns fikesbirishins. exe [FFF28C13] :J Pick DLL |
Iraparted Funchion: Found
rea DODBE 108 mod gdi32 dil ard 0038 name CreateCompatibleBitmap _:j
e DOOBE10C mod: gdiz2 dil ord D083 name: CreateCompatibleDC il
rva DODEE 110 mod:gdi32. dl ord: 0072 name: B it)k Ehow Sﬂismli
P EIEIEISB1 1 4 rnod gd|32 dll ard: 0166 name:Fectangle
rox DOOEET1C moc| | Invaldale Runclionis "
M ggggg} Sg moj : Trace Levell [Dizasm]
Fva mod!
. Trace Level2 [Hook) Clear | .
ra000BB128 modh g oty e (e Flag) | rook I
Plugin Tracer (45 Protect 1.2x Emul)
Tracer Lailed in D'I E2U4UB g
o Lt Bhank)z)
Eurrenr |m|:|ort Dialete thunk|s] —I&. —
C [decimal: 12] valid modulels
Get AP Calls
[] .!
Select Code Section(s)]
IAT Infasnesd Switch “LOADER® IS CIIsLOADER) Oplara
OEP[000BORIC WX o e [G0005160
Rua [O00SE000 sige __ CoMapse allnodes R _|
Euit |
LoadTncI Sme' (et Imports |' Fiex Dump I

Fig.2

The valid thunks have reference only to one library. So locae next invalid thunk and find the
invalid entry with doing cut thunk on this until you will get al entries valid. Chedk the ald
new section chedk box and click on Fix dump, locae the iris dump file and choose save. Done
with step 3.

IDA
Thefirst layer of protedion was removed, the next step isthe send layer. Doing

a bred&point on time function you will get to 00467&1 and a bit later to 00444A25 location.
Looking at the essembly we seefollowing:

004673C1 call ds:time

004673C7 lea edx, [ebp+var_28]
004673CA push edx

004673CB call ds:localtime
004673D1 push eax

004673D2 call ds:asctime
004673D8 mov edi, eax
004673DA or ecx, OFFFFFFFFh
004673DD Xor eax, eax
00467453 lea ecx, [ebp+var_44]
00467456 lea edx, [ebp+var_528]
0046745C push ecx

0046745D push edx

0046745E call ds:StartLic
00467464 test eax, eax
00467466 jz loc_467AAF

and at 00444A25:

00444A25 call ds:time

00444A2B lea edx, [esp+160h+var_14C]
00444A2F push edx

00444A30 call ds:localtime
00444A36 push eax

00444A37 call ds:asctime
00444A3D mov edi, eax
00444A3F or ecx, OFFFFFFFFh
00444A42 Xor eax, eax
00444AB8 lea ecx, [esp+15Ch+var_144]
00444ABC push ecx

00444ABD call ds:HeartBeatUpdate
00444AC3 test eax, eax
00444AC5 jz loc_444B5C

Next question is: What are the Startlic and the HeatBeatUpdate functions? Both are tested
with eax, so it isjust a eax=TRUE matter? Y es and no. Y es becaise when the license is valid
the function returns 1, no because it does not only that.

Sartlic: Looking on the stadk we will seethat there is pushed fisrt some pointer to some bytes
and second is the structure with license number. Some bytes. as you'll tracethe program you
will seethat these bytes are adually encrypted ascll date with simple xor:

00467437 mov al, [ebp+edx+var_44] ;read the byte

0046743B lea edi, [ebptvar_44]

0046743E xor al, OEFh ; Xor with Oxef
00467440 or ecx, OFFFFFFFFh

00467443 mov [ebp+edx+var_44], al ;write next byte

00467447 Xor eax, eax

00467449 inc edx

0046744A repne scasb

0046744C not ecx

0046744E dec ecx

0046744F cmp edx, ecx

00467451 jb short loc_467437 ;loop back

And after the Startlic it is deaypted and compared to the originally extraded date in ascll
format:

0046747D mov al, [ebp+edx+var_44];read byte
00467481 lea edi, [ebp+var_44]

00467484 xor al, 0CDh ; Xor with cd
00467486 or ecx, OFFFFFFFFh

00467489 mov [ebp+edx+var_44], al ;write byte
0046748D Xor eax, eax

0046748F inc edx

00467490 repne scasb

00467492 not ecx

00467494 dec ecx

00467495 cmp edx, ecx

00467497 jb shortloc_46747D ;loop back

At locaion 0046742 is the date compared. So the program sends a challenge and should get
aproper response.
Heartbeatupdate: The same with this function. The only value that is pushed into the stadk is
the pointer to challenge. This can be located at 000444ABD.

This gave me ideato emulate the whole library, so the new eeyelic.dll will be
creaed.Of course can be these locaions patched, but the dll could be used together with the
protected application. The file istamper proof, so this is andvantage (in case of virus attad).

Building the dll

The library should contain following functions. HeatBeaUpdate, StartWizard,
GetLicUserName, StartLic, GetMeter and GetMeteringType —these ae imported by the
application and should contain a proper response function for the program. Below | will
provide the am source of the dll:

.386

.model flat,stdcall

option casemap:none

include \masm32\include\windows.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib

.data

.code

DIIEntry proc hinstance:HINSTANCE, reason:DWORD, reserved1:DWORD
mov eax,TRUE
ret

DIIEntry Endp

HeartBeatUpdate proc
push ebp
mov ebp, [esp+8]
mov edi, [esp+8]
or ecx, OFFFFFFFFh
Xor eax, eax
xor edx, edx
repne scasb
not ecx
dec ecx

looop:
mov cl, [ebp+edx]
mov edi, ebp
xor cl, 022h
Xor eax, eax
mov [ebp+edx], cl
or ecx, OFFFFFFFFh

inc edx
repne scasb
not ecx

dec ecx

cmp edx, ecx
jb looop
mov eax,1l
pop ebp
retn 4

HeartBeatUpdate endp

StartWizard proc

ret
StartWizard endp

GetLicUserName proc
retn 4
GetLicUserName endp

StartLic proc
push ebp
mov ebp, [esp+0ch]
mov edi, [esp+0ch]
or ecx, OFFFFFFFFh
Xor eax, eax
xor edx, edx

repne scasb
not ecx
dec ecx

laoop:
mov cl, [ebp+edx]
mov edi, ebp
xor cl, 022h
Xor eax, eax
mov [ebp+edx], cl
or ecx, OFFFFFFFFh

inc edx
repne scasb
not ecx

dec ecx

cmp edx, ecx
jb laoop
mov eax,1l
pop ebp
mov eax,1

retn 8

StartLic endp

GetMeter proc
XOr eax,eax
retn
GetMeter endp

GetMeteringType proc
XOr eax,eax
ret

GetMeteringType endp

End DIIEntry

The def file:

LIBRARY eeyelic

EXPORTS HeartBeatUpdate
EXPORTS StartWizard
EXPORTS GetLicUserName
EXPORTS StartLic
EXPORTS GetMeter
EXPORTS GetMeteringType

And the makefile:

\masm32\bin\ml /c /coff /Cp eeyelic.asm
\masm32\bin\Link /DLL /DEF:eeyelic.def /SUBSYSTEM:WINDOWS /LIBPATH: \masm32\lib eeyelic.obj

Conclusion

Although the gplicaion hastwo protection layers and the one is “crad proof”, the
protection can be still bypassed by a simple program which emulates the also PCGuard
protected dll.

Exercise: Write aloader for the main program that deletes the \windows\inst32ba.dil file
and HKEY_CLASSES_ROOT\{22622989-0F06453D-0A87DE3B} registry entry before starting the
iris.exe.

