Alfred Lois currently | ooking for job opportunities aroundthe worl d
ininformati on security. Hsinterests arein techniquesin cracking,
hacki ng and howto prevent them He graduated fromThe University of
Hong Kong in Conputer Engineering (1% class) and is finishing his
mast er degree in The University of Birm nghamin Sep 2002. | f anyone
wants to hire himor offers hi mopportunities (e.g. PhD, short tern
contracts, etc), please contact himat alfredkm o@ot mail.com

Software Protection and itsAnnihilation

Alfred K.M. Lo

alfredk mlo@hotmail.com

"Thereisa crack, a crack in everything, that’s how the light getsin."

May 2002

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

Abstract

This project identifies commonly used software protection techniques and their
vulnerabilities. By working from the worldviews of crackers, software industry, and
researchers, this paper gives analysis on the principles behind the attacks, the
investigating psychology, how exploits are constructed, and what can be done to prevent
the problems.

Three commercial software programs are studied in depth as case studies. The resultsring
the alarms of the software industry. It shows that our daily-used commercial software,
even being protected by commercial protection solutions, is too easily to be defeated.

Keywords
encryption; packing; unpacking; reverse engineering; cracking; obfuscation;

watermarking; software protection; anti piracy

\ersion History

Publication Date ‘ Changes

May 30, 2002 Add Version History, numerous wording fixes
April 22,2002 Report first rel eased

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 2

mailto:alfredkmlo@hotmail.com
mailto:alfredkmlo@hotmail.com

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Legal Disclaimer

All the materials discussed in this report are served for educational purposes only. You
should not reverse engineer, debug or crack gpplications or programs you haven’t
legitimately bought, or not for your own personal use:

- Thereisno intention to encourage cracking.
- Itismerely astudy of state-of-art software protection systems.
1. TextPad isavery good program that isdeserved to buy.
2. Dreamweaver is avery good program that is deserved to buy and its trial should
be deleted after 30 days anyway.
3. SmartSaver Pro 3 is a very good program that is deserved to buy and its trial
should be deleted after 15 days anyway.
- Any legal issues arising from the misuse of the information presented here ARE NOT
the writer’s responsibilities.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 3

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Table of Contents

AADSTIACT ...t eeses e 2
LEQAIDISCIAUMET ...ttt 3
IO oo [0 ox 1T o IOV 8
2. SIMple Threat MO ... e et s 9
3. CraCking TOOIS ...t bbb st e 1
3.1 Reverse ENgiNEEring TOOIScccvvveiiiineeeit et se s ss e sre e 11
3.1.1 Disassembler/DeCOMPIIETccvireeeieieeeeeiste e 11

3.1.2 DEDUGQEN ..ottt e st e

3.2 System Monitoring Tools

3.3 Others TOOIS.....cceuiviiireirirericre et

3.4 DISCUSSIONScuevveecerieriees e tstssesasesesstses e se st ssse b esesesas e se st e e s ssese st b esasnsnsessnsesanns
4. Basic protection tECHNIQUEScccc.ccevicieiiece ettt se s ss s eneaes

4.1 SOftWAre TOKENS ..ot

4.2 Hardware Tokens

4.3 Manual Look-ups

=T B T o] (== o TR
A5 LIMIS ©oeiveireieiee ettt er et e
4.6 CrIPPIEBWATE ...ttt e bt et et s sttt
A7 DISCUSSIONS ...ncvieneeeueeieeesesereseaeseseessseesseesese st st e s sessbss st st etseseseseee b bassbnesesssensneses
5. Basic protection COUNEMMEASUIEScceeuirirerireresriesesssssessssssesssesessssssesessssssssssenns 21
5.1 The SIMPIE SCENANIOcueveeeiiieririree st et e e 21
5.2 The SIMple ChalleNge ... s 21
5.2.1 BY DEDUGET ..ottt ettt en et st ee s 22
5.2.2 By DiS@SSEMDBIETc.cveiieiieercsteteses et 22
5.3 USEfUl BreaKpOiNtSccoieeiererrineeeeeseiiees et sss e se st s sssssnsnns 23
5.4 USEFUI OP COUEBS .ottt ettt ettt st sb e st s 24
5.5 Case Study 1 - TEXIPAU VA.5.......coiiriri e s 24
5.6 DISCUSSIONSoueeriieeeeecee ettt sttt sb et sttt s s et s es bbb 27
6. Advanced protection tEChNIQUEScccuveriieersei st 29
6.1 COAE ENCIYPLION ..ottt ettt st sttt sre s 29
6.2 EXecutable PacCKing.........cov i sesiere s s sne s 29
6.3 ODFUSCALIONeoeieeeeeee ettt s e 30
LN a1 B T=Y o 18 o o {1 T U U SN 31
6.5 DISCUSSIONS ...ouvviteeieeser ettt er et e e 31

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 4

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

6.6 A more robust protection MOdelccccovveeiiireeeieii e s 32
7. Advanced protection COUNLEIMEASUIES.........cuuuerririieineest s stese s s sessesesesesesnns 34
7.1 Manual UNPacCKiNg.......coc.uiiireeiinesieie s sbses s sses s s se s 34
7.2 Process PatChinNgccccuiiirirciriceseistesste et sre st s ssse s sne s 34
7.3 Case Study 2 — Process Patching TextPadccccccvviveevesiinseeccsseneenns 35
7.4 DISCUSSIONS ...ovriieesies st ses et es s e as e e es et snn et nr e 41
7.5 Defeating Dynamic Decryption Of COUEccevicervereeiece s 42
8. Case StUdY 3 — DIEAMWEAVETcccueererrrereirreeenereseesaseensesesssesssssssesssssssessssesssssees 44

8.1 Preliminary Investigation
8.2 REICASENOW.COM.....ocoiieiireiceieree ettt
8.3 1MAgiNed SCENAIIOcveviiririieee ettt
8.4 Cracking Approaches
8.5 First Attempt

R IS T=ToTo] o [0 AN 1 (=0 o] o] PP 51
8.7 FINAI AEIMPL.....vceitiie ettt st b sttt 54
8.7.1 Dreamweaver.exe as a l0aderc.coooveerincieneen e 54

8.7.2 Dreamweaver.exe as a PAtCHETcoveceviviericeseiese s 56

8.7.3 Annihilating DreamWEAVETcceueeriieieiee s eeessiseese s sessseseenns 56
8.8 DISCUSSIONScvriteeies st te et st es et ser e nr e 65

8.9 SUJOESTIONS ...ttt sttt sttt et eb e bbb e er s 66

9. Case Study 4 — SMart SAVEN PrO.......ccouiieiiiciece sttt s ese s ssne s s 68
9.1 Preliminary INVEStgatioNcccoeieieeniisecssecce s eae s ee s 68

9.2 PreViEW SYSIEIMS ..ottt sttt sere st st s en e sae s 69
9.2.1 Understanding VDhOX ..ot e 69

9.2.2 Cracking Strat@gycovveeveeesireeerieresnenseiessesssseesesssssessesssesssessssssssesees 70

9.3 ManUal UNPaCKING.......cccuiiiririreeiinesietsseesaesestssese s sssssssssese s se s s ssssssesanns 71
9.3.1 Locate the Original Program Entry POiNt........ccccceeiveieneiesseeecseneenn, 71

9.3.2 Dumping the memory into diSK ... 74

9.3.3 Fixing the Section INformationoceveeenniniencnes s 75

9.3.4 Regenerate missing informationccocccvivensinisesescn s e 76

9.3.5 FiNAI fiX UPS 1.vvveeeriiierisiee et se st se e sae e se s s ssss s st esenas 89

9.4 DISCUSSIONS ...uvriieesies st ses e st es s et se e as e s es e ee et snr et nr e 89

9.5 SUQGQESTIONS ...ttt ettt sttt eb e bbb bbb er s 20

10. Future of SOftware ProteCtioNSccccoueeviiierese s s 91
10.1 Code Partitioningc.ccvveeeeieeesiersiseeetessissesessisessesere s sssssesessssssssssesnssssssenns 91
10.1.2 Relegating through NEtWOIKScccoueeieiinnieerec s 91

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 5

Software Protection and itsAnnihilation— Alfred K M Lo May 2002
10.1.3 Relegating t0 @ CO-PrOCESSONcouuvverurireeiererestrisresesere s ssssesesesesesees 92
10.2 WALEIMAIKINGcveiiieesiieinesiiete et sve s s ese sttt s sre s 92
10.3 Secure Software ENQINEEINGccocuiinirieereiiiresinie e s ere s sieseens 93
10.4 AAVErsary ECONOMICScovvuerueriiviereiresesiesseesesisesessssssesesssssnsssesssssesessssssesesenes 94
11, CONCIUSIONSciieeeceerieee ettt e ee s bbbttt eb ettt 95
RETEIENCES ...ttt er e e en e er s 98
Appendix A — Selected WIN32 AP ...t ere s 100
WaitForDebugEvent
ContinueDebugEvent ...
DEBUG_EVENT ..ottt sttt sn st e
CREATE_PROCESS_DEBUG_INFOccooiinnireeriereeerssee s sesenes
EXCEPTION_DEBUG _INFO......coiiiitenrenineseseere e e sesensnnnenas
EXCEPTION_RECORD.......coitittieieesiriee et seises e ee s sesss s sess s ssses s
WIEEPTOCESSMEIMONYveieisec ettt et tese st et ea s se s ee s sase s sesane s
Appendix B — Partial Dreamweaver Disassembly
Appendix C — USSPRO.EXE IMport Details ...

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 6

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Tableof Figures
Figure 1 Simple thread model of a computer program...........ccceevvereonneenns 9
Figure 2 Debugging in SOMICEccooveveiiinere e s 14
Figure 3 Microsoft Visual Studio DebUQQET.......cccovvevevreirreeeeire e 15
Figure 4 NAG screen of TEXIPAd..........ccvrirreiiininie s 25
Figure 5 HOW PACKEr WOTKScoovuirieiniiine st s 36
Figure 6 Memory at OXO04ASBEccccouvirenieeieseseeesssese s sssesneees 37
Figure 7 Procedures for Process Patchingcccccvevviiveecceiesensccsisnen, 37
Figure 8 File Offset at OXD2100.........ccoovureiiiiinieneseeesesiese e s seens 38
FIQUIE 9 PE FOIMAL ..ottt sttt sve st s 39
Figure 10 PE Header INformation..........coveeoeinnnenene s 39
Figure 11 Section INfOrmMationcccceeeevsniieneie e 40
Figure 12 Executable Mapping in RUNLIMEccccoueeiveniirieeecese e 40

Figure 13 Running Dreamweaver
Figure 14 Tamper WarNiNg ... ssseesssssesessssesessseses

Figure 15 User REQISIIatioNccccuvveiieeneiie st s sisssreseeesse e sesnssesnns 45
Figure 16 Ordering Dreamweaver by Phone...........ccccovvneivcesesceseenene, 46
Figure 17 Files in Dreamweaver 4 DIr€CtOrYccoovveenirnrinieeneneereseieens 50
Figure 18 Tamper WarmiNG ... siene s sesenenes 53
Figure 19 WINdOWS ProCess LiStcccveiimeeiiiiiniessisis s sse s eessees 55
Figure 20 EXECULION EXCEPLION ..c.cucuveviiivieeeiie vt se s sers s sseseseens 55
Figure 21 Debug EVENt COUE........ccvvirireie et 59
Figure 22 Section information of dreamweaver.ttyceeoieerineeene 65
Figure 23 RUNNINg SMartSaVver Pro.........ccvriiiineisisesessees s e sessesnes 68
FIQUIE 24 VDOX ettt eae st st sa et ee st snsssns 69
Figure 25 Vbox Tampering Warningccccoueeevvieneerenesinsseesesssesessssesesseees 73
Figure 26 PE header Of USSPrO.EXEccoovuvrriiinrinie e ere s 75
Figure 27 Dump File with wrong section informationccocvveiiinenne 75
FIQUIE 28 CALL O TAT ...ttt sasse s s sre s anna s 77
Figure 29 Structure of IMport Table.........cccuveeeiiinreiereese e 79
Figure 30 Unpacked SmartSaver inside the old PE header..................... 81
Figure 31 Import Table Of USSPrO.EXE.......ccvvreririienrires e 82
Figure 32 ReVirgin in OPErationcceeveiiieneneseeeese s s ssresessssesssssesenens 88

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 7

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

1.Introduction

University researches on security can sometimes be too academic. They will tell you
when the program is encrypted, the way to defeat it is to wait until it is decrypted in
memory and then extracts the contents, and that’s all. But, the fact is that this dump
executable won’t run correctly unless some necessary conditions are met, and practica
protection schemes are designed so that these necessary conditions are difficult to be
achieved.

On the other hands, people in the underground community may lack of formal trainings
and knowledge. However, they can possess very sophisticated and practical skillsthat are
not commonly known by academic researchers. The combination of these twos can be
very powerful and very interesting, and thisis the objective of this project.

Software protections appear in many forms, from those be seen by end-users such as
textbox asking for serial key, to those invisible watermarks embedded in software. For
whatever they are, they serve only one goal — to protect the intellectual property rights of
the owner.

On the other sides, there are always some people who want to bypass those protections.
These people are called crackers. In their parlance, they called themselves "software
hackers', those people who "destroy" the CODE of the application that they are
examining. Their acts to breach software protections are called ‘cracking’.

Cracking started as long as protection schemes appeared. The first cracking document |
have come across dated back 1987. It should be stressed that these twos help evolving
each other. Whenever there is a new protection scheme, there must be someone who
works out the crack of it and anew scheme will appear which isstronger...

This project contains case studies. Three programs have been selected. They are TextPad,
SmartSaver Pro and Dreamweaver. They represent different market segments in the
industry: TextPad (US $27:chesp), SmartSaver Pro (US $59.95:medium) and
Dreamweaver (US $299:expensive).

In some senses, cracking is good because it “helps” software to be better protected.
Needless to say, the race between software protectors and crackers is endless.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 8

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

2. Simple Threat Model

Possible attacks to software can be best understood with a simple threat model of a
computer program [1].

Data

Program Logic

Figure 1 Simplethread model of acomputer program

Data

The data area may store confidential information like user passwords, seria numbers,
private/decryption keys, etc. Through monitoring the contents in these areas,
confidentiality can be breached.

Program Logic

On receiving the input and the state of data, the program acts according to the logic
defined in its codes. By reverse engineering, valuable pieces of code flow - “the brain of
the program” can be extracted. This alows someone to extract a module from the
program and use it in his own. If someone modifies the program logic, a process known
as patching/tampering, the execution flow will be modified, e.g. bypassing a security
check.

IN/OUT

The input and output of a program can be monitored. By capturing this information,
replay attack is made possible.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 9

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Whole Program

Because the program isakind of digital information, any copy of it is exactly the same as
original. It is possible for someone to make illegal copies of the program and resell
them — an act known as software piracy.

Therefore, any programs under this model are subjected these attacks:
1. Monitoring

2. Reverse Engineering

3. SoftwarePiracy

4. Tampering

To cope with these potential threats, measures have been taken to protect the software.

Here | classify the techniques into basic and advance levels, according to their
complexities and eases of implementation.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 10

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

3. Cracking Tools

Most protections cannot be bypassed without the use of tools. So let’s first take alook at
them. These tools fal into two main categories, reverse engineering tools and
system-monitoring tools.

3.1 Rever s Engineering Tools

It helps us to know the logics of the underlying program. By using these tools properly,

we are able to study the interna of a process, understand its weaknesses and carry out

exploitations. They can be further subdivided into 2 categories:

1. Disassembler/Decompiler — alows us to study the static logic of the program. E.g.
W32Dasm

2. Debugger — alows us to study the runtime behaviors and status during program
execution. E.g. SoftICE and the Debugger in Visud Studio

3.1.1 Disassembler/Decompil er

The Disassembler is used to disassemble the compiled code and generates its assembly
equivalents, while the decompiler generates its high-level source codes. Decompliers
work very well in Java (almost 1-1 mapping) but don’t perform well in C/C++. Since our
targets in this project are not Java programs, we will not use decompiler and thus is not
discussed further.

A very good disassembler for x86 environment is W32DASM. This allows studying of

the internal program structure and useful information to be extracted. By the way, itisa
debugger aswell.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 11

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

E URSoft W32Dasm Yer 8.93 Program Dizassembler/Debugger

Dizazzembler Project Debug Search Goto Execute Test Function: HewxData Hefs Help

s

U Dadm
S2lie]

| Select a File for Disaszembly

Figure 2.1 W32Dasm

W32dasm is a Windows Program Disassembler/Debugger featuring:

Disassembles both 16 and 32 bit Windows programs

Disassemblesfor MM X instructions

Displays for Exports, Imports, Menu, Dialog, and Text References
Integrated Debugger for 32 bit Programs (16 bit Debug NOT available)

A wbdPE

3.1.2 Debugger

Debuggers work by emulating the processor. Therefore, programs are executed in the
debugger container as if it is interacting directly to the processor. By acting as the
middleman, the debugger is able to trace the runtime execution, memory/register contents,
and setting break points, etc.

There are two kinds of debuggers, application-level debugger and system-level debugger.

Application-level debugger, sits itself between the OS and the debugging program, while
system-level debugger sits itself between the processor and the OS. Therefore,

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 12

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

system-level debuggers are more “powerful” because it can debug the OS at the
driver/kernel level.

Here are the functions that are often provided by the debugger:

1. Execute each source statement, one at atime, with as much time between statements
aswe would like. This procedure is known as single step, or stepping for short

2. Stepinto, out of, and over function calls

3. Havethe program execute normally until a specified source statement is reached and
then stop execution. This procedure is known as breakpoints

4. Display the values in variables, either while the program is running normally, or

during single steps and breakpoints. This procedure is known as watch

Change the valuesin variables and then have the program continue operation

Monitor and modify the run-time memory and register contents

Disassembling

Monitoring the Stack Context

© N o v

In this project, these debuggers are used — SoftICE and Visua Studio.

Softl CE — The System-L evel Debugger

According to Compuware [5], “SoftICE is a powerful kernel mode debugger that
supports device driver debugging on either a single or dual machine configuration...
SoftICE reduces debugging downtime by providing powerful features that extend beyond
the limitations of the traditional Windows SDK/DDK tools. SoftiCE has unique
system-wide views and controls that make it easy to understand and diagnose the widest
variety of Windows software problems.”

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 13

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

W o T T i 2]
i i

St
l'-mu$| L] r.—-"'.ih i

o
s o o o e ST

© Bsianly

L méoesmslion el

o St pr [ncldet kst and A
St ard snsin oot

Figure 2 Debugging in SoftICE

Here are the most commonly used commandsin SoftICE:

Step Into [press F8] — step into the call

Step Over [press F10] — step over the call

Step Out [press F12] — step out of the current call

Register Modifying [R] — e.g. R EAX FFFFFFFF (modify EAX to FFFFFFFF)

Memory Dump [D] — e.g. D 400000 (dump the memory content at 0x400000)

Memory Search [S] — e.g. SO L FFFFFFFF “str’ (search the memory from 0x0 over

FFFFFFFF bytes for the string “str’

7. Breakpoint of execution [bpx] — e.g. bpx 401000 (Softl CE breaks when instructions
at 0x401000 is executed)

8. Breakpoint of memory read/write [bpm] — e.g. bpmb 401000 RW (SoftICE breaks
when the byte at memory location 0x401000 is access by read/write operations)

© 0k~ wNPE

Please refer to SoftlCE command references for details[14].

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 14

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Microsoft Visual Studio — The Application-Level Debugger

Visual Studio contains this nice debugger that allows you to control the operation of your
program, to display and change the valuesin variables.

“' mnlwan? - Wicinealt Ycusl |- oon] - [Iicacusship]

L T ER tws b Fuod Dide. Twr Wiees e -l =
[=T R = =l

[=i =i = [
e SFRIRE S .. A]

TE=

e e Y SR
drn o | AR ETheE

i e)
I S = -2 [0

Ear LoULJuZd kX Ju_Ju_ v -

ECE IZadeid TX Faddalil
ESI £.764FEE II J0IM0I0C
= FFFIigEe TF O NIAFTEC
FI= . £ PESLST TE_-_WMTWINE S - 0E7

[R I IR I
DV

L= MF 5 = “157 °C & 076 [5 om 20T T T I =
I om ACTR Mt Tt R7wc DLal CRei 370 nronraEs e e
1 oimil Crmll SJuromoere & &
S LU UL UL U e L B T T R
N S T 1Y T T T T T i
e T 1Y T T T Ell
e — Bl
i] *
A - N B Ve -
B] ST
Hama |vaka j —————————————— —_—
=l i

A g w B *I FI\ Wl 1 0 WadE B S KL L

IEE 1]

Figure 3 Microsoft Visual Studio Debugger

3.2 System Monitoring Tools

There are two system-monitoring tools that are proved to be very useful throughout the
project. They are FileMon and RegMon.

FileMon — The File Monitor

According to Sysinternal [6], “Filemon monitors and displays file system activity on a
system in real-time. Its advanced capabilities make it a powerful tool for exploring the
way Windows works, seeing how applications use the files and DLLSs, or tracking down
problems in system or application file configurations. Filemon's time stamping feature
will show you precisely when every open, read, write or delete, happens, and its status

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 15

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

column tells you the outcome.”

RegMon — The Registry Monitor

According to Sysinternal [7], "Regmon is a Registry monitoring utility that will show you
which applications are accessing your Registry, which keys they are accessing, and the
Registry data that they are reading and writing - al inreal-time.”

3.3 OthersTools

If we want to tamper the software, binary editing is unavoidable. A hexadecimal text
editor is nevertheless necessary. It should alow editing binary files, showing in binary
and ASCII view, and is better to be equipped with:

1. HEX Cut, Copy and Paste support

2. HEX Insert and Déelete of characters

3. HEX Find, Replace and ReplaceAll

4. HEX Files comparisons

An example of good hex text editor is “Hex Workshop” from Breakpoint Software.

3.4 Discussions

Different tools are available depending on different platforms. The tools listed here are
for Microsoft Windows, but the same principles can be applied to other platforms. This
list is in any way not comprehensive. More sophisticated and dedicated tools will be
introduced | ater in the report.

It should be noted that debugger, although be put in the category of reverse engineering
tools, is aso aruntime monitoring and tampering tool as well.

For system-level debugging, the SoftICE provides many robust and powerful functions
and can be invoked at any time, even before Windows starts. Thus, it allows debugging of
any programs at any time. Besides, application-level debugger reguires explicit creating
or attaching to the process of the debugging target.

Because of the powerfulness of system-level debuggers, most people may think that it is
the only one they need. In fact, this may not true. Asit sits between OS and the processor,

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 16

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

itisnot possible for it to use the OS API, and can be expected, the user interface provided
by these system-level debuggers are very native (DOS like) and hence non-user-friendly.
USB mouse support had only been added into SoftICE since last year.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 17

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

4. Basic protection techniques

4.1 Softwar e Tokens

It is the most commonly used techniques for software protection. It can have the

followingforms:

1. Registration Key — one single serial key hard-coded in the program code. Our input
is compared with it.

2. Multiple Serials — the serial number is broken into parts (e.g. [XxX]-[Xxxxx]-[xxx]).
A seria validating algorithm exists to check against these sub-parts. Using the
algorithm, the program can accept many different serials without hard-coding them.

3. Serid/Name — the software token here is a serial/name pair. Checking is based on
algorithm like multiple serids (e.g. check if f(name)=serial)

4. Key File - the software token exists as a license file stored inside the hard disk or
system registry. In many cases, this key file, apart from storing user profile, may
also contain usage information (e.g. how many days it has been used).

4.2 Hardware Tokens

Because software is a kind of digital information that is so easy to be duplicated, people
invented hardware tokens, and make the operation of their programs dependant on the
presence of these physical keys. The root assumption to this protection method is that
hardware tokens are difficult to be copied. The art of making them difficult to be copied
is called “Copy Protection”.

Physical keys can also be in many forms;

1. Key disk — specially produced diskette. E.g. By boring a hole in the magnetic media
at a specific location. The program then checks for bad sectors at that location for
validation.

2. Dongle - small hardware attached at the I/O (seria/paralel/USB) port of the
computer. The checking routine queries those ports for values. If the hardware token
isthere, it will detect the electric pulses and then generate appropriate responses.

3. Smart Cards - a plastic card about the size of a credit card, with an embedded
microchip that can be loaded with data. Some smart cards contain both code and
data and therefore it can execute routines using the built-in microchip. Smart Card is
tamper-resistant, whenever it detectsintrusion, it will destroy the datainsideit.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 18

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

4, CD - Most CDs in the past doesn’t have any copy-protection at all. The CD in itself
is aready a very good token because in the old days, most people don’t have CD
copying equipment (e.g. CDR/CDRW) and the capacity of CD was even larger than
that of the hard drive. It was impossible to copy the entire CD into the hard disk.
However, with the advance of CD copying technology, measures have been taken to
protect the CD from copying. Some tricks used by manufacturers are discussed in
[43].

4.3 Manual L ook-ups

This was the protection method used in early days. It is a scheme in between hardware
and software tokens. The protection is like this: when you enter a game, the game asks
you: “What is the color of the pattern at the left hand corner of page 32?” The protection
assumption is based on — it was more difficult to copy the manual at that time (especially
for color one) than diskettes. It is “hard” because it is amanual but is also “soft” because
one can ask others to lookup the manual for the answers.

4.4 Nag Screens

They are those annoying screens that prompt up usualy at the start of the program,
claiming the rights of the owner, prompt the user for registration or so. It isavery smple
technique used to prove ownership.

45 Limits

There are many forms of limits. The most common ones are time limits imposed by
shareware. The program will disable itself after the limit exists.

4.6 Crippleware

Some functions are deliberately disabled, e.g. save. Those functions may be unlocked if
the user registers the software — commonly used in shareware.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 19

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

4.7 Discussions

In view of the protected program, hardware and software token protections are essentially
the same. The formula includes invoking some protection checking routines inside the
program to see if required tokens are present and correct. (Note: this is not true until
hardware tokens possessing code execution abilities gppeared in the market, e.g. Smart
Card. The implication of this will be discussed in the section “Code Partitioning” later in
the report.) Therefore, in terms of cracking, bypassing these checking in the program are
also the same.

Hardware token schemes and manual-lookups are controversial measures to discourage
piracy, the act of unauthorized copying of software. These strategies are “effective but
failed”. It is effective because they are really difficult to be duplicated, but it is also
inconvenient for legitimate users as they are not able to make backup (in case of
copy-protected hardware tokens) and annoying (asking for manual lookup every time the
game starts). More importantly, they fail because many cracks that patch the program to
bypass protections can be found on the shared media. Therefore, piracy can be achieved
without duplication difficulties.

On the other hands, shareware uses an entirely different approach to combat piracy.
Shareware, instead of being copy-protected, actually encourages copying and spreading
of itself. Nag screens, limits, crippleware are measures often used by shareware to claim
ownership, reminding registering, and enforcing its freedom of use isnot being abused.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 20

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

5. Basic protection counter measur es

5.1 The Simple Scenario

Simple protection schemes discussed above can be easily defeated if they are not further
protected by encryption/obfuscation. This is because many of them can fal into this
simple model:

result=security_check(conditionl, condition2)
if (result = = TRUE)

then <authorize and goto proper program execution>
€else <prompt up error and penalty>

Condition 1 may be the user input serial humber, and condition 2 may be the required
number. They may also be detected hardware response and the required response, etc.
The security check can range from simple string comparisons to system I/O queries (like
file checking, port checking, etc). The penaty may be disabled function, program
termination, etc. Using your imagination, many simple protection schemes can be fitted
into this simple model.

5.2 The Simple Challenge

My previous work [13] on Windows Media Player hacking describes in very details what
happens when Win32 functions are translated into assembly, that | won’t repeat here. The
above simple model will probably be translated into assembly like this:

push condition2

push conditionl

call security_check

test eax, eax

jnz addressl (authorized)
<prompt up error and penalty>

Just a brief to the assembly code — the last parameter to the function is always pushed

first, then the second last one... thefirst one. The result of the called function is stored in
register EAX. The test operation performs a logical AND operation without modifying

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 21

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

input parameters. Therefore, if the result is FALSE (0x0 in most cases), the AND
operation of two zero parameters will flag up the “Z flag” in the flag register. Therefore
the conditiona jump (jnz = jump if not zero) will not be carried out and penalty is
executed.

To keep my report brief and precise, | will not explain assembly instructions any more.
Please reference to some 80x86 Intel instruction references, such as [11,12].

5.2.1 By Debugger

Therefore, crackers, by setting appropriate breakpoints (e.g. break if system executes

StrCmp), and upon the debugger breaks, they can do:

1. “Serid fishing” — by looking at the contents a condition 1 or 2, the required
parameter to pass the security check is leaked.

2. Tampering — by modifying the instruction from conditional jump (jnz) to
unconditional one (jmp), the penalty will never be executed. If the call to security
check is disabled (replaced by nop), the security checking will never be invoked.
Cracker may note down this instruction address and patch it permanently into the
executablefile.

3. Reault modifying — if tampering instructions is not possible, e.g. because of CRC
checking, etc, crackers can invert the flag after the call (e.g. changing EAX from 0
to 1 or modify the Z bit of the flag register so asto affect the jump).

4. Key Generator — if the required key is not hard-coded, crackers can reverse engineer
the key generating algorithm inside the program, and release a key generator to the
public. Some commercial key generating schemes are discussed in [8].

5.2.2 By Disassembler

Sometimes crackers don’t need to use debugger at al. By noting down the error message
after the security check, say “Wrong serial key! Program exits”, crackers can just
disassemble the file and look through the “String Data References” in the file. Most
disassembler (like W32Dasm) supports the extraction of static string data in the
initialized data section of the executéble. Therefore, by locating where in the program
references to these strings, they are able to locate the security checking routine and
bypassit, e.g. through patching.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 22

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

5.3 Useful Breakpoints

As demonstrated, we can break software protections if we can locate the security
checking routines. The most convenient way to do thisis by setting breakpoints. Below is
alist of commonly used breakpoints for operations related to:

1. Windows - bpx CreateWindow, bpx CreateWindowEx(A/W), bpx ShowWindow,
bpx Updatewindow, bpx GetWindowText(A/W)

2. Message box - bpx MessageBox(A/W)

3. Alarm beep - bpx MessageBeep

4. Dialogbox - bpx DialogBox, bpx DialogBoxParam(A/W), bpx
GetDIgltemText(A/W)

5. Registry operations - bpx RegOpenKey(A/W), bpx RegOpenKeyEXx, bpx
RegQueryKeyVa ue(A/W), bpy RegQueryKeyVal ueEx, bpx RegSetValueg(A/W),
bpx RegSetVa ueEx(A/W)

6. Crippledfunctions - bpx EnagbleMenultem, bpx EnableWindow

7. Timing - bpx GetLoca Time, bpx GetSystemTime, bpx GetFileTime, bpx
GetTickCount, bpx GetCurrentTime, bpx SetTimer

8. Filel/O —bpx CreateFile(A/W), bpx OpenFile, bpx ReadFile, bpx WriteFile, bpx
_lcreat, bpx _lopen, bpx _Iread, bpx _lwrite, bpx _hread, bpx _hwrite

9. Driveoperations— GetDriveType(A/W), bpx GetLogicalDrives, bpx
GetLogicaDriveString(A/W)

10. Port /O, useful for “dongles” — bpio 378 (378, 278, 3BC are the usua port address
for paralel port), bpio 3F8 (3F8, 2F8, 3E8, 2E8 are the usua port address for serial
port)

11. Stringmanipulations — bpx CompareString(A/W), bpx Istrcmp, bpx Istrempi

12. Visual Basic String manipulations — bpx __ vbaStrCmp, bpx vbaStrComp, bpx
__vbaStrCopy, bpx __vbaStrMove

For functions come with (A/W), its name is appended with either ‘A’ or ‘W’. They are the
result of ANSI or Unicode support:

- 8hitANSI — String ‘ABCD’ is stored as41 42 43 44

- 16 bit Unicode— stored as 00 41 00 42 00 43 00 44

Many of Microsoft Win32 functions and structures have wrappers to provide Unicode
support. The functions or structures that have both ANSI and Unicode support have a

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 23

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

note in the information section of their reference pages. When the application is compiled,
the function (or structure) will be substituted with the gppropriate version ("A" version
for ANSI or "W" version for Unicode). Therefore, if in our program, our call is CreateFile,
the compiled code will call CreateFileA (if ANSI) in Windows. Obviously, if we set
breakpoints, we need to gppend ‘A’ for ANSI functions but ‘W’ for Unicode.

There are many more functions in Win32 API that can be useful to be breakpoints. For
details of these operations, please refer to the Microsoft Win32 API reference [15].

5.4 Useful Op Codes

Typical op codes that can interest crackers are:

- JE(umpif equa)/74

- JINE (jump if not equal) / 75

- JMP (unconditiona jump) / EB

- NOP (no operation) / 90

Tampering can be done by changing these op codes, e.g. from 74 to EB.

5.5 Case Study 1 - TextPad v4.5

The first case study in this project is TextPad, a popular editor. The interesting thing of
Textpad isthat it is not free, but allows for unlimited trial. Therefore, it reliestotally on
the users’ honesty on buying the software. The user, can “technically evaluate” the
product “forever” without paying.

Version: 4.5, by Helios Software Solutions
Price: US $27.00 per single user license
Website: http://www.textpad.com/index.html
FreeEvaluation:

- Unlimited time

- Flename: txpeng450.exe

- Filesize: 252 MB

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 24

http://www.textpad.com/index.html

Software Protection and itsAnnihilation— Alfred K M Lo May 2002
AITETTTE———— L=
Flev EM zamn o ws dew wenae gola po 131 =
T = A s = R e s

== =

[ET |

F Teda.” o I warewr™ "1
TR P T PRI T

-2 RNl Y

k:

L e T W a1
2lad Inasan. b ras d,unla
uranl-sh =kl @l

owan =

B =1 |1nl L
1 - e Fra e [Far e oam

Figure4 NAG screen of TextPad

The protection used by Textpad isa NAG screen — It holds for several seconds, asking for
registration.

The gpproaches to get around the NAG should be:

1. Use SoftICE to set breakpoints before/during NAG

2. Step through instructions

3. Disables suspicious CALLs, modifying CALL results, etc

So which breakpointsto set?
Because we want to break before the NAG appears, therefore any possible points NOT
AFTER NAG is okay. To minimize the number of times stepping through irrelevant

instructions, we need to choose one breakpoint closest to NAG.

Notice the NAG displays for several seconds. Therefore, it is intuitive to try breakpoints
on functions about time. First we disassemble TextPad.exe, read through the import table

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 25

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

for functions related to time. We found it imports three time-related functions in

KERNEL32.

1. GetTickCount - retrieves the number of milliseconds that have elgpsed since
Windows was started.

2. GetSystemTime - retrieves the current system date and time. The system time is
expressed in Coordinated Universal Time (UTC).

3. GetlLocaTime- retrieves the current local date and time.

Then we set breakpoint on these functions in SoftICE. Here is the result:

- GetSystemTime doesn’t break before NAG

- GetLocal Timedoesn’t bresk before NAG

- GetTickCount first breaks before NAG. Then we disabled the breakpoint by “bd *”,
press “F12” 20 times to step out of the program stack and back into the TextPad.

:0045F500 85C0 test eax, eax

:0045F502 7535 jne 0045F539

:0045F504 8D4508 leaeax, dword ptr [ebp+08]
:0045F507 50 push eax

:0045F508 FF7508 push [ebp+08]

:0045F50B 56 push es

:0045F50C FF156C965800 call dword ptr [0058966C]
:0045F512 85C0O test eax, eax 3 wearehere
:0045F514 750E jne 0045F524

:0045F516 FF750C push [ebp+0C]

:0045F519 FF7508 push [ebp+08]

:0045F51C FF1594965800 call dword ptr [00589694]
:0045F522 8BFO mov esi, eax

Then press “F10” to step over instructions, notice the screen changes on displaying the
NAG. Sometimes SoftICE may block the screen, in this case, press “F4” to get a clear
view. After stepping over around 440 times, we reach:

:00404EC5 FF75EC push [ebp-14]
:00404EC8 FF90D0000000 call dword pir [eax-+000000D0]

:00404ECE 85C0 test eax, eax
:00404EDO 7424 je 00404EF6 3 weland here
© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 26

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

:00404ED2 8BSED0000000 mov ecx, dword ptr [esi+000000D0]
:00404ED8 6A05 push 00000005

:00404EDA E809CO0F00 call 00500EE8 (3 thiscreates NAG
:00404EDF 8B86D0000000 mov eax, dword ptr [esi+000000D0]
:00404EE5 FF701C push [eax+1C]

:00404EE8 FFD7 call edi

If we step over the call at 00404EDA, the NAG appears. Natice the jump highlighted at
00404EDO and the call, this pattern falls in our simple scenario - “if result is good then
proceed else penalty”.

So, we changed the statement from

:00404EDOQ 7424 je 00404EF6 to
:00404EDO EB24 jmp 00404EF6

This modification would force the program to bypass the penalty anyway.

Done. A search of the code statement in W32DASM revealed that the statement
corresponds to offset 4EDOh in .exe. Finaly, we modified the .exe file to patch it
permanently.

TextPad was cracked by changing 1 byte only.

5.6 Discussions

The implication of the results in our first case study is that, simple software protections,
under our threat model, can be cracked easily by changing 1 byte only! Textpad, although
is an unlimited trial software, which is expected to be easy to crack, many other
commercia programs, can be defeated similarly. Even if the program is protected by
hardware tokens that we cannot duplicate, if the protection can be bypassed in this way,
the use of hardware is meaningless. Security is as weak as the weakest link.

So what is wrong? The problem lies in the routine providing security to the software

(called the guard module in [04]) isitself not secure. Therefore, under our threat model,
it is possible to see and mimic what the guard module does, and fool it to let us pass

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 27

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

without the valid key.

As aresult, a new protection model is needed, and this cannot be done without advanced
protection mechanisms such as encryptions, obfuscation, etc.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 28

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

6. Advanced protection techniques

Securing “data” has been for long. Securing important data such as keys, database, and
password files are very well known and aware by the people. However, the executable
code is aso a valuable intellectual asset that should be protected. As discussed before,
basic software protections can be easily bypassed if the code itself is not secure. The art
of securing the code is called “code security”.

Here we will look at four different ways to achieve code security — encryption, packing,
obfuscation and anti-debugging.

6.1 Code Encryption

The most common way to protect data from eavesdropping isto encrypt it. It is already a
prerequisite in electronic commerce today. From the point of view of the encryption
algorithm, code and data are essentially the same, therefore code encryption and data
encryption can be done in the same way. After encryption, the code will then be immune
to normal disassembling and decompiling.

There are many kinds of encryption. In early days, when the computer was very slow,
encryption is simply XOR tricks — encrypting and decrypting using the same XOR value.
With the increase in processing power, we have more advanced encryption algorithms
like DES or RSA. In any cases, the key length remains the most important measurements
for how easy the encryption can be defeated.

6.2 Executable Packing

Executable packing is originally designed for compressing executable and yet still let it
be runnable, with reduced disk spaces without runtime or memory penalty. Because the
original datais scrambled during the “zip” process, it also protects the packed code from
normal disassembly/decompiling process.

Packing is commonly used in the software industry because it protects the code with
reduced image size. More importantly, making a packed executable can be as easy as
making an executable zipped file. Everything is automatic. Some packer programs also
have the ability to add anti-cracking measures such as anti-debugging routines in the

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 29

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

packed executable.

Here is a list of commonly used packers. UPX, ASPACK, PECOMPACT, PETTITE,
PEPACK, NEOLITE, WWPACK32, PKLITE32, SHRINKER.

6.3 Obfuscation

Obfuscation is the process of transforming the software to unintelligible but still
functional code. The aim of obfuscation is to make examine of disassembled or
decompiled code yields no useful information; thereby dramatically increases the time
required to reverse engineer the code.

There are several ways to add obfuscation to the code [2]:

1. Lexica transformations — e.g. scramble identifiers to replace name of classes,
methods and variables by meaningless strings.

2. Control transformations — by inserting opaque predicates, e.g. changing the
sequential instruction executions “a followed by b” <a;b> to:
a
if (p=="true)

This gives an illusion to the reverse engineer that b may not aways follow the
execution of a, and a may be followed by b’. The predicate p here should always be
evaluated to true but very difficult to be deduced by crackers.

3. Datatransformations — e.g. through splitting variables to turn the representation of a
boolean into two integers. The program is modified to use these two integers to be
interpreted as boolean values, such as0, 0 asTRUE and 0, 1 as FALSE.

Since reverse engineering Java byte code almost yields 1-1 mapping to the source,
obfuscation is commonly used in securing java byte code, e.g. SourceGuard. For x86
programs, some packers claim they provide obfuscation to the binaries as well, e.g.
PECompact.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 30

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

6.4 Anti-Debugging

It is a roundabout way to code security. It works by confusing the debugger so that the
debugger cannot investigate the internal of the program.

The tricks to confuse debugger are divided into two main categories:

1. Preventive actions — actions that are taken by the program to make the user unable to
trace it during program running (e.g. playing with the interrupt)

2. Sdf-modifying code

These tricks are described in details in [42]. However, to combat with these
anti-debugging tricks, crackers also have tricks to do anti-anti-debugging.

6.5 Discussions

Encryption and packing of the code are in principles the same: they transform the code
and restore them back to original during execution.

For the encrypted/packed program to be executed, the executable must be equipped with

a small decryption/unpacking routine, which must be itself unencrypted/unpacked. When

it is executed, the encrypted/packed program will then either be:

1. Fully decrypted/unpacked in memory at runtime before itsfirst instruction starts, or

2. Dynamically decrypted/unpacked thereby remaining most parts of the program
encrypted/packed in runtime, partial decryption/unpacking ison-demand.

The first approach is commonly used because the program’s performance is unaffected
during runtime after it is full unpacked/decrypted. The second one will incur heavy
performance penalty and thusisnot typical in the market.

Because of similar principles in packing/encryption, from now on, unless otherwise
specified, ‘packing’, ‘unpacking’, ‘packed’, ‘unpacked’, also include the meanings of
their encryption counterparts.

So what is the challenge of encryption and packing to crackers? Apart from have
immunity to disassembling/decompiling, it also adds anti-tampering functionality. Just an

analogy with zipping, changing a sentence in a plain text is easy, but changing the plain

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 31

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

text directly in the zipped text is difficult! Unlike zip, some packers doesn’t include the
unzip function so even if the cracker knows which packer the program is using, he cannot
unpack with ease.

Since changing only 1 byte can crack many programs, crackers can easily disseminate
small crack files that is programmed to locate a particular file offset and modify that byte.
But if the file is “zipped”, the entire “zipped” executeble will be different - the 1-byte
change becomes many byte changes. This makes the crack much larger to be effectively
disseminated.

Encryption and packing make the protected code impossible to be read, as the encrypted
content is no more valid instructions, in contrast, obfuscation protects the code by making
it moredifficult to be read, but the obfuscated codes are still valid instructions.

Practically speaking, obfuscated codes do not show structures, usually overwhelm with a
large amount of conditional jumps and calls, and include loops that are heavily nested,
inter-referencing each other.

With these advanced techniques, a more robust protection model can be made possible,
which is described next.

6.6 A morerobust protection model

First, we need to modify our program to work with the dependency of the guard module.
This may be as simple as containing calls to the guard module, however, to prevent others
to disable these calls easily, the program should be encrypted/packed. The guard module
initializes the program by decrypting/unpacking it. In this way, the program won’t work
without the guard module. Before encryption, the codes can be further obfuscated to
better protect from reverse engineering.

The guard module checks the presence of the key (either hardware or software) and if itis
satisfied, it initializes the program. As described in [04], “the guard module must do its
job in complete secrecy. It must be impossible to see what it does, impossible to imitate
what it does and impossible to trick it into dosing its job when the key is not really
present”. Therefore, the guard module should also be obfuscated, encrypted and also
protected by anti-debugging measures.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 32

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

The copy protection measures used by the key should be effective, and hence, we can
assume that the key (either software or hardware tokens) here is secured and cannot be
duplicated.

This model will make the program significantly more difficult to be cracked and is
adopted by professional commercial protection schemes.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 33

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

7.Advanced protection counter measures

The techniques discussed above also have their weaknesses, by noting the following:

1. For the code to be executed, it should be decrypted/unpacked in memory — thereby
reverse engineering is possible.

2. Obfuscation can only increase the difficulty in code reverse engineering, but not
impossible.

Reversing obfuscated codes is just a matter of time, and moreover, whenever crackers
encounter these codes, they will probably find another way to get around the protection,
instead of spending time into this prepared trap. Our focus here is how to get around the
encryption.

7.1 Manual Unpacking

As many programs are not protected by dynamic encryption/decryption of code, therefore,
in most cases, when the first instruction of the protected program is to be executed, it
must be fully unpacked. By dumping the unpacked content, we will get the “naked”
executable. In cracker’s parlance, the act to extract these fully unpacked codes is called
“manual unpacking”. It is an advanced stuff. We will deal with this later in case studies 4.

7.2 Process Patching

If unpacking is impossible and it is difficult to get rid of the encryption, and given the
crackers can find the run-time locations of code to be tamper-with, the challenge to them
is. how to effectively create a crack file to patch the executable permanently and
effectively disseminateit.

The ‘solution’ is “process patching’.

After the packer’s routine unpacks the program and before transferring control to it, we
somehow, seize the control and run our code to patch the unpacked process in run-time
memory, after that, we transfer the control back to the program as if nothing happens. In
this way, we are patching at the time when the program is decrypted/unpacked in memory.
Packed program is NEVER changed on disk.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 34

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

7.3 Case Sudy 2 - Process Patching TextPad

This case study will give us hand-on experiences with packed programs, therefore, better
reinforcing our knowledge and prepare us to do advanced unpacking.

We first use a packer to pack up Textpad. To make it ssimple, the packer should not
provide other protective measures other than code scrambling, here we choose UPX
(http://upx.sourceforge.net/). We choose to pack Textpad because it is simple and we are
familiar with it aswell asits crack.

Use UPX (The Ultimate Packer for eXecutables) to pack Textpad to simulate protection:

C:\Program Files\TextPad 4>\upx120w\upx TextPad.exe
Ultimate Packer for eXecutables
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001
UPX 1.20w Markus F.X.J. Oberhumer & Laszlo Molnar May 23rd 2001

Filesze Ratio Format Name

1900544 -> 756224 39.79% win32/pe TextPad.exe

Packed 1 file.

Rename Textpad.exe to topatch.exe. We treat this as the protected target.

For crackers, it isnot difficult to identify afile that has been packed. Some good signs are:

disassembler cannot disassemble the program, generating exceptions, or if it can, it shows
only the packer’s routine. We will discuss some more methods to detect packing in case
study 4.

The principle of how packers work is depicted in Figure 5. First, the instruction of the
packer’s routine is executed (labeled as packed program entry point). At this moment, the
program is not yet unpacked into memory (depicted as a block of zero). After the packer
finishes unpacking the program into the memory, it will transfer the control to the
unpacked program through ajump or call.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 35

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

unpacked program

A

entry point -> 00 - 05
00 FF
00 EE
00 FB

Packed program
entry point ->

jmp unpacked p.e.p. jmp unpacked p.e.p.

Before program After packer stub
execution finishes unpacking

Figure 5 How packer works

Using Visua Studio Debugger, we verify our theory by looking at the end of the
topatch.exe. The end of the packer’s routine is a jump to 004A038E, which is an
uninitialized location before the packer’s routine is executed.

005D8CB5 89 03 mov dword ptr [ebx],eax
005D8CB7 83 C3 04 add ebx,4

005D8CBA EB E1 jmp 005D8C9D

005D8CBC FF96 88 E6 1D 00 call dword ptr [esi+1DE688h]

005D8CC2 61 popad

005D8CC3 E9C6 76 EC FF jmp 004A038E

005D8CC8 00 00 add byte ptr [eax],d

005D8CCA 00 00 add byte ptr [eax],d

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 36

http://upx.sourceforge.net/

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Memory A
Address: |0x004A038E
004AO38E OO0 00 00 60 06 60 80 ﬂ

904A0395 OO0 60 00 90 66 @9 68
904AB39C 60 60 OO OO 66 B0 B8
A84AB3AZ OO G0 OO OO A6 BB B8
004A03ARA OO0 00 OO 90 OO0 89 68
904AB3B1 ©00 00 00 90 66 @9 68
004AB3BE 00 6O OO OO 66 80 B8 j

Figure 6 Memory at 0x004A 38E

Running topatch.exe, setting breakpoint at GetTickCount, we found that everything is
exactly the same as Textpad.exe during runtime. The one-byte patch is till at 00404EDO.
In fact, thisis intuitive as the operation of the packer should be transparent to the runtime
program.

We need to patch topatch.exe so that the program will jump to our code after unpacking.
Our code should modify the run-time memory (1 byte patch) and then performs another
jump to normal unpacked program execution. See Figure 7.

unpacked program
entry point -> 00 - 05 - 05 -
00 FF FF
00 EE <-to be|patchefd 0A <- patched
00 FB FB
Packed program Our Code - Our Code - Our Code ==
entry point -> 4‘ 4‘ 4‘
jmpour code — jmpour code — jmpour code —j
Before program After packer stub After Process
execution finishes unpacking Patching

Figure 7 Procedures for Process Patching

We need to find space in topatch.exe to insert to our code. File offset at 0xb2100 contains
some spaces (lots of zeros) for our code.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 37

Software Protection and itsAnnihilation— Alfred K M Lo May 2002
I Ui - - [By e Fles Tewtad 4 tonstch.ene] =IOl
[Cpe e dewth Projct Yew Fomest Con Mero Adwrwed e e -l =
O aF o bd ([5 A W H Ll e GoE80% a8 Ty
Fas | Eisktnzh | ODChECEOhs 0L F3 B0 B9 0T 06 FF 96 B0 E6 LD 00 25 EL 07 47 ¢ 3% EFV] TI
T OOOhIOeh: OB 0 79 D B9 FB 57 48 F2 AE 55 FF 56 B4 EE 1D ; .ﬂ_.‘ﬁnﬁu) bi
| D Pz Zh nootzocaks ob0s 60 T4 0T BB 0F &3 £ 04 EB EL FF S¢ 05 Be ¢ .07 G 02
b Flan O0ChZICcOh: 1000 1 ES C& 74 EC FF OO0 00 OO O0 OO OO 0O OO ¢ ..lr.-v:‘...
OO0 EDM0RE 00 00 O 00 00 00 00 OF 00 00 00 00 03 00 00 00 § weasees
11 Progeen Fbes ToatPed Hhopstch
=\ Prograas Phan] TazkPad 4 hf‘ QOCEI0a0h: 00 00 00 00 00 00 Q0 00 D7 00 00 00 ©0 OO 00 00 ¢ ...
- J OO ECTOhe 00 OO0 00 00 00 00 00 00 D0 00 00 O0 O OO0 00 00 § seareerieeiinni,
ooobzdoan: [0 o0 o0 Do 00 o a0 o0 00 0o om o0 o0 o0 00 00 W es e
O0ohEd10h: OO O0 03 00 00 00 00 OO0 D0 00 00 00 03 00 00 00 § cveevenvrnninnn,
000hZ120n OO 00 00 00 00 00 00 00 DO 00 00 00 0 00 00 00 ¢
OOoEZid0h: 00 00 00 OO 00 O 00 00 D3 00 00 00 OO OO 00 00§ .
OOCREI40hs 00 00 00 00 00 00 00 00 D3 00 00 00 00 00 00 00 ¢ ...,
| | *lid |
For Helps, pmesss F1) P BILOOH, 7250, CW D06 Mol ZHTIZ00 5002 Fis Sireq THAZH il £

Figure 8 File Offset at 0xb2100

The assembly below is our run-time memory patching code. Remember in case 1, we
need to patch TextPad at memory location 00404EDO with EB.

push eax

mov eax, 00404EDO

mov byte ptr [eax], EB 31 byte patch
pop eax

jmp 004AQ038E 3 unpack program entry point

We then need to modify the original jmp 004A038E (E9 C6 76 EC FF) at file-offset
0xb20c3 to jump to our code at offset 0xb2100.

But what is the relation between memory address and file offset? We need to know about
Win32 PE file format and its memory organization.

PE (Portable Executable) is the native file format for Win32. There are very good
references on PE file format [17,22,23]. PE files, as depicted in Figure 9, first come with
a header, containing important information for thefile.

Most file contents are stored into blocks called ‘sections’. A section is a block of data

with common attributes. The whole executable will be mapped into memory, during
runtime.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 38

Software Protection and itsAnnihilation— Alfred K M Lo

Figure 9 PE Format

DOS MZ header

DOS stub

PE header

Section table

Section 1

Section ...

Section n

Here are some important facts that we should be aware of:

May 2002

1. Codesin the executable reference each other using relative addressing. The addressis
called ‘Relative Virtual Offset’ or ‘RVO’ for short.
2. Every process hasits own 4GB address space.
3. When mapping the whole executeble into memory, mapping start at address “Image
Base”, thus during run-time, code’s address = Image Base + RVO.
4. Each program starts execution on its first statement at an address called “Program

Entry Point”.

5. During the mapping process, the size of sections in file MAY NOT BE EQUAL to
that in memory. Thisis determined by “Raw Size” and “Virtual Size”.

Figure 10 and 11 shows the information of topatch.exe displayed by PE Editor bundled
with ProcDump, a widely used unpacking tool.

PE Structure Editor

Header Infos

IDD‘IDBEED
Size of image IUD‘]EDDDD
Image Base : IUD4DDDDD

Entry Paint :

— Structures Editor

Sections

Directomy

" To PE file

—&pply changes method : ———
¢ Only to PE header

Cancel

Figure 10 PE Header Information

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

39

Software Protection and itsAnnihilation — Alfred K M Lo

Sections Editor

— Sections Informations ;

May 2002

Marmne | Virtual Size | YWirtual Offzet | Raw Size | Raw Dffget | Characteristics | ok
UF=0 00126000 00001000 Q0000000 Q0000400 E00000s0
LF=1 000B 2000 00127000 QooB1EOO Qoooo400 E 0000040
RE: 00007000 00103000 Q000E800 Q0oBZ200 Cooo0040

Caticel |

Figure 11 Section Information

Notice the important statistics of sectionsin Figure 11. Figure 12 shows the mapping of
sectionsin file during runtime.

UPX0
400] UPX0
UPX1 UPXI
B2200!
JISIC
JISIC
File
Run time
memory

127000

1D9000

Figure 12 Executable Mapping in Runtime

Therefore offset 0xb2100 in UPX 1 in the file corresponds to this address in memory

= Image Base + 0x127000 - 0x400 + 0xb2100

= 0x400000 + 0x1d8d00

= 0x5d8d00

Recalled that in the packer’s routine:

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

40

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

005D8CC2 61 popad
00SD8CC3 E9C6 76 ECFF jmp 004A038E
005DSCCS 00 00 add byte ptr [eax],d

The jump at 005D8CC3 can be changed in this way:
E9 cd JMPrel32

E9 is a near relative jump. The parameter cd is the displacement of the destination
relative to next instruction at current position. Displacement calculation is always
dictated by “Destination address — Source address”, therefore our parameter cd is:

0x5d8d00-0x5d8cc8=0x38

Because Intel uses little-endian notation, i.e. lower byte to lower memory location.
Therefore our final code = E9 38 00 00 00 at file offset 0xb20c3.

For our code’s jump statement, the calcul ation for the cd parameter is similar:
0x4a038e — 0x5d8d10 = Oxffec767e. Therefore the op code for our jump statement is:
E9Q7TE76 EC FF

005D8D00 50 push eax
005D8D01 B8 DO4E 4000 mov eax,404EDCh
005D8D06 66 C6 00 EB mov byte ptr [eax],0EBh

005D8DO0A 58 pop eax
005D8D0B E9 7E 76 EC FF jmp 004A038E
005D8D10 00 00 add byte ptr [eax],d

Add our run-time memory patch code at 0xb2100 and modify the file offset at Oxb20c3 to
jump to our patch code. We have finished patching the packer ’sroutine to do run-time
tampering for us.

7.4 Discussions
I have illustrated how to patch and thus crack the packed program during runtime in

memory. This is called ‘process patching’, which allows us to do run-time tampering.
With this method, we can get around most of the issues arising from encryption/packing

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 41

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

because the program must be fully unpacked during execution time.

Our patch code should be in a section, which is executable in memory, and this must be
truein UPX1, as this is the section where the packer’s routine is located. This may not be
the case in other sections such as “.rsrc’.

Since code and data can be in the same section [17], our patch code may fall on data (e.g.
global variable) initially at zero. In this case, our code may be overwritten at runtime. We
may need relocation (not at this time).

The 1-byte patch memory location should also be writable because we are doing
tampering. This must be always true because it is in where the program is unpacked
(written) at run-time.

7.5 Defeating Dynamic Decryption of Code

For programs that are protected by always maintaining most of its code encrypted in
memory, with continuoudy encryption and decryption, they can be defeated in a similar
way. These programs look like this:

Packer’sroutine: For (every encrypted routine segment i)
decrypt i
jump i 3 execute segment i

encrypti
Since there must be a segment of code unencrypted, we can dump this segment from
memory. By exercising all the different functions of the software, we can gather al the

unencrypted contents. What crackers need to do is to patch the jump statement:

Packer’sroutine: For (every encrypted routine segment i)

decrypt i
jump cracker’scode (3 cracker patch thisto jump todo dumping/patching
encrypt i

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 42

Software Protection and itsAnnihilation— Alfred K M Lo

Cracker’s code of dumping:

Cracker’scode of patching:

Dump all unencrypted bytesini Check for signaturesin the segment

jump | If (signature is in this segment) then patch it

jumpi

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

May 2002

43

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

8. Case Study 3 — Dreamweaver

Version: 4.0, by Macromedia

Price: US$299.00

Website:

Trial:

- 30days

- Filename: dreamweaverdtbyb.exe
- Flesize:24.1MB

8.1 Preliminary I nvestigation

Below is the screen shown on running Dreamweaver.

Dreamweaver 4 Trial

[kt £ A vmsavn. rnacromedia, com],

3
S,

macromedia’
DREAMWEAVER®

macromedia’

what the web can be.”

Copyright @1997-2000 Macromedia, Inc. All rights reserved.

Dreamweaver(i] 4 iz everything you need to create a profeszional web site whether you

prefer ta wark. with familiar visual layout tools or demand the contral of a robust test- E
editing enviranment. Far more infarmation and the latest on Dreamweaver 4 updates, go

ta hittp: /v macromedia. com//dreamweaver,

INREENRENN -
i |
0 22 days |eft 30 days -

Figure 13 Running Dreamweaver

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 44

http://www.macromedia.com/software/dreamweaver/

Software Protection and itsAnnihilation— Alfred K M Lo May 2002 Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Changing system date results in security tampering and the trial is disabled. When we go through the registration process and reach “Select Payment Method”, we
choose “Go Offline”. This alows us to do transaction without typing in credit card
WARNING! Security Resources Tampered information. We continue through the process. Then we reach “Select Communication

Method”. Let’s choose to do it by phone.

Ciue to security problems, vour free trial of
thiz software has ended. If vou have any
questions, please contact technical support

by e-mail &t suppart@releasenow. com ar cal Finally, a screen pops up and asks us to enter the unlock code. The unlock code will be
[B00] 210-5517 toll-free in Marth America . . .

and [E50) £22-1439 from other intemational given if we have completed the transaction on phone.

|ocations.

Have vour Yiza, MasterCard or American Express ready. Then dial
[800) 210-5517 in North America, or [E50] 522-1439.

Figure 14 Tamper warning

— Ordering Information

. . . . 1] 'w'hen the operatar asks for pour ‘caller code', sap 357 -408-966-00 1"
Click “Buy Now”. We see a screen prompting up for user registration. Note the logo of

“releasenow.com”. 2] Tell the operator which products you want to purchase:
Aty Product Code Description and Price
% TR Dot 500

Thank. wou for registering this product. Mow, please tell us about yourself. By
filling out thiz form you are entitled to receive information about updates and
upgrades. Be sure to use the biling address of the credit card you will be
using.

3 ety wour tatal price of $299.00

4] Give payment info: Viza Mo

Exp: Mame
First Mame I.&Ifred Last Name |Lo
5] Enter the unlock code ||

To continue, press Mest'

Company IEU
Address [Hello Flat Address &
I (]9 LCancel |
Cauntry IUnited States LI Clity W
State I I j it s W Figure 16 Ordering Dreamweaver by Phone
Phone[3456777777 Fas[s4sErrrrre
E-mail Iu&erid@isp.com At this moment, we have the following clues:
1. What is ReleaseNow.com?
2. We have atextbox entering the unlock code. This means there must be a verification
releasenow q mechanism inside Dreamweaver to verify our code. The program will be “unlocked”
~oom < Back IWI Cancel Help
if the codeis correct.
Figure 15 User Registration

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 45 © Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 46

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

8.2 ReleaseNow.com

The result below is extracted from the address:

Company: ReleaseNow

URL: http://www.releasesoft.com

Description: ReleaseNow is the leading commerce service provider (CSP) for vendors of
digital goods...ReleaseNow offers the essential building blocks of e-commerce, including
online store creation, transaction processing and customer support, as well as functions
specific to the e-commerce of digital goods, such as electronic packaging, digital
delivery and real-time fraud detection...

The link to is DEAD. Later, | was confirmed that another security
company caled “Aladdin Alliance” acquired it.

Information extracted from the Macromedia Dreamweaver Trial FAQ
http://www.macromedia.com/software/dreamweaver/trial/trial_fag.html:
The copyright protection scheme cr eated by ReleaseNow.com for Macromedia ESD trial
software is highly sensitive to changes and to attempts to change the system clock. The
copyright protection scheme is aso highly sensitive to modification or deletion of its
"secret" security files...ReleaseNow.com builds Macromedia's ESD technology with

high security and places security information in the registry aswell as other places.

8.3 Imagined Scenario

Based on the above information, below is the imagined scenario for Dreamweaver:

- Macromedia design and final code Dreamweaver. Then it 'outsources electronic
distribution, protection and commerce stuffs to ReleaseNow.

- Asthe “time left counting and warning” appears in the screen with “Buy now” option
as well as with the ReleaseNow logo, it is good to assume that Dreamweaver itself
originally does NOT have any protection at al. ReleaseNow, acts as the SECURITY
ENVEL OPE, provides all the protections for Dreamweaver.

- ReleaseSoft protects Dreamweaver by storing security information (e.g. installation
time) into places including “secret files” aswell as “registry”.

- Every time ReleaseSoft runs, it checks against information stored in these places. If

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 47

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

they appear invalid or contradicting, program will expire itself immediately.

- ReleaseSoft also provides electronic transaction, allowing software-buying offline on
phone through the use of “unlock code”. Possibly, after transaction confirmation, user
gets the unlocking code from the sales agent.

- The unlocked trial Dreamweaver will probably treat itself as “FULL” version, as all
thefunctions are included in the trial.

- ReleaseSoft security envelope may be stripped out after unlocking (just guessing).

8.4 Cracking Approaches

At this stage, these are the possible approaches:

1. By tracing through instructions for processing “unlock code”, the correct “unlock
code” can be dumped or we can modify the checking routines/results & Thus we
can unlock the program and convert it to FULL.

2. We can aso trace through the security information checking routines, by monitoring
APIs such as GetSystemTime & we can get virtudly UNLIMITED TRIAL.

3. By trashing all the information stored in these secure places, we can trick
Dreamweaver into thinking that it isa FRESH FIRST TIME INSTALLATION.

8.5 First Attempt

Input arbitrary unlock code and hope it says “Invalid Number” by calling MessageBox
API, then we can trace using “String Data References’ or setting a breakpoint at
“MessageBoxA”.

Nothing hgppens after you input the unlock code and press “OK”. ReleaseSoft
deliberately eliminates ACKsto avoid tracing.

Then we use a must-use API. Type “bpx GetDIgltemTextA” in SoftICE. SoftICE results
in two different breaks. There are two GetDIgltemTextA calls in the program to get the
unlock code. Obviously, it is used to trick crackers, as GetDlgltemTextA one time is
enough.

We first break at rsagnt32!.text+9e99. Rsagnt32 suggests that we are in another module,
other than dreamweaver.exe.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 48

http://www.ealaddin.com/partners/software_valueadd.asp?cf=tl
http://www.releasesoft.com
http://www.releasesoft.com
http://www.macromedia.com/software/dreamweaver/trial/trial_faq.html:

Software Protection and itsAnnihilation— Alfred K M Lo

* Reference To: USER32.GetDlgltemTextA, Ord:0104h

:1000AE99 FF1564420210
:1000AE9F ESEC67FFFF
:1000AEA4 6824630410
:1000AEA9 6828730410

I
Call dword ptr [10024264]
call 10001690 3 PressF12 and weare here
push 10046324
push 10047328

* Reference To: KERNEL32.IstrempiA, Ord:02FFh

:1000AEAE FF1550410210
:1000AEB4 C3

|
Call dword ptr [10024150]
ret

Second break is at rsagnt32!.text+99cc.

* Reference To: USER32.GetDlgltemTextA, Ord:0104h

:1000A9CC FF1564420210
:1000A9D2 8D8D 7CDEFFFF
:1000A9D8 51

:1000A9D9 8D9574DEFFFF
:1000A9DF 52

:1000A9E0 E82BC80000
:1000A 9E5 83C408
:1000A9E8 8D8574DEFFFF
:1000A9EE 50

:1000A 9EF 8D8D68DEFFFF
:1000A9F5 51

:1000A9F6 BO9D00B0410
:1000A9FB E840CD0000

Initial attempt was made to reverse engineer the unlock code checking routine. However
after ten days of reverse engineering, twenty pages of hand-written routines were drafted

I
Call dword ptr [10024264]
lea ecx, dword ptr [ebp+FFFFDET7C] (3 PressF12 and weare here
push ecx
leaedx, dword ptr [ebp+FFFFDE74]
push edx
call 10017210
add esp, 00000008
leaeax, dword ptr [ebp+FFFFDE74]
push eax
leaecx, dword ptr [ebp+FFFFDEGS]
push ecx
mov ecx, 10040BDO
call 10017740

but still no useful conclusion was deduced because:

1. Thereisno acknowledgement to user saying “input valid” so we can’t trace from the
back to the final comparison statement. It is difficult to determine the end of routine.
2. The two GetDIgltemTextA are followed by deeply nested CALLSs, unconditional

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

May 2002

49

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

jumps (JMP) and conditiona jumps (JA/JB/IBE/JE/IG/IGE/IL/ILE/INE/INS/JS).
Jump and Call sections are inter-referencing each other without structure -
deliberately scrambled and obfuscated to trick crackers.

3. The inputted unlock code, instead of being checked by high-level routines like
Istrcmp, is treated in bits unit and checked through low level instructions like
cmpl/test/xor/and, etc.

Clearly, It is atrap to crackers. Although reversing the scrambled codes is just a matter of
time, | decided to give up and use other possibly smarter approaches.

Here are the files in the Dreamweaver directory:

& C:"Program Files',Macromedia’Dreamwe | i |EI|5I
File Edit Wiew Favorites Tools Help |ﬁ
$sBack - = - 3] | @search hFolders % | Y I8 % w5y | EF
Address Itxl C:\Program FilesiMacromedia\Dreamweaver 4 j e

B o | [Configuration
i | . [Downloaded Extensions
i 3 Help
Dreamweaver 4 Cam
CI Lessans
rsagnt3z.tty I;:I ReadmeContent
TTY File L1 Tutorial
i E] Dreampop. tby
Modified: 892000 17:24 I
orfied: &/3f @Dreamtky.tty
Size: 260 kKB %Dreamweaver.exe
" | @ Dreamweaver.tty
BisRcsonnal EtserizlizeDll. dl
@ language. tky
&]License.htm
PSAPL.DLL
&]Readme.htm
@Resourcesoﬂnterest.htm
@Rsagent.hlp
C by
e I
Type: TTY File Size: 280 KB [za0kE [\ my computer 7

Figure 17 Filesin Dreamweaver 4 Directory

Because we break on Rsagnt32 in SoftICE, it suggests that we are in another module

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 50

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

(either aDLL or EXE file). Rsagnt32.tty should be amodule in PE format, but was made
to have file extension .tty — atrick.

Use Procdump’s PE Editor, | have checked every .tty files against PE specification. All of
them (except dreamtky.tty) are in valid PE format. This means they can be run (for EXE)
or be linked (for DLL).

8.6 Second Attempt

At first | want to try approach 2 by setting breakpoints on file and registry operation APIs,
but | may get overwhelmed with results because the Dreamweaver, apart from checking
security information, aso opens many files and registry entriesfor uses. It is better to find
out where the security information is first. Let’s try Approach 3. This can be greatly
facilitated by the two monitoring tools:

1. FileMon
2. RegMon
The gpproach:

1. First set our system time to make Dreamweaver expired.

2. Then start filemon and regmon to LOG every file/registry read operations and filter
out suspect entries.

3. Try deleting those suspect entriesto see if Dreamweaver “refreshes”.

You may want to limit the results to dreamweaver process by entering “dream” in the
monitoring filter criteria.

These are the results of successful file reading operations from FileMon:

C:\5d0jawja.sys I3 suspicious
C:\PROGRA~1\Logitech\MOUSEW~1\SY STEM\ccmsghk.dll
C:\Program Files\M acromedia\Dreamweaver 4\Dreampop.tty
C:\Program Files\Macromedia\Dresmweaver 4\Dreamtky.tty
C:\Program FilessM acromedia\Dreamweaver 4\Dreamweaver.exe
C:\Program Files\M acromedia\Dreamweaver 4\language.tty
C:\Program Files\M acromedia\Dreamweaver 4\rsagnt32.tty

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 51

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

C:\WINNT\system32\config\software. LOG
C:\WINNT\System32\IMM 32.DL L
C:\WINNT\System32\INDICDLL.dlIl
C:\WINNT\System32\NVDESK32.DL L
C:\WINNT\Systen32\RICHED20.dll
C:\WINNT\System32\RICHED32.DLL
C:\WINNT\win.ini

Security information would not save under Dreamweaver directory because deleting it
will refresh its ‘memory’. The DLLs accessed are well known system DLLs. This can be
verified on the Internet. The win.ini haven’t been modified.

These are the results of successful registry reading operations from RegMon:

HK CR\ultxfil&Format\M SHOOTOO\Wwr ite 3 suspicious

HK CR\ultxfil&Format\M SHOOTOO\open (3 suspicious

HK CR\ultxfil&dFormat\M SHOOTOOWIate 3 suspicious

HKCU\CLSID

HKCU\Control Panel\Desktop

HKCU\Control Panel\Desktop\SmoothScroll

HK CU\Software\Microsoft\Windows NT\CurrentVersion\Windows
HKLM\SoftwaréMicrosoft\Windows NT\CurrentVersion\Compatibility2
HKLM\SoftwaréMicrosoft\Windows NT\CurrentVersion\Compatibility32
HKLM\SoftwaréMicrosoft\Windows NT\CurrentVersion\l ME Compatibility
HKLM\SoftwareéMicrosoft\Windows NT\CurrentVersion\Windows
HKLM\SoftwareMicrosoft\Windows NT\CurrentVersion\Windows\Applnit_DLLs
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon
HKLM\SoftwaréMicrosoft\Windows\CurrentVersion\App Paths\Dreamweaver.exe
HKLM\SoftwaréMicrosoft\Windows\CurrentVersion\App Paths\Dreamweaver.exe\PATH
HKLM\SoftwareMi crosoft\Windows\CurrentVersion\Explorer
HKLM\SOFTWARE\RS_NT5

HKLM\System\CurrentControl Set\Control\Session Manager

Let’s delete the registry entry “HKCR\ltxfile\” and the file “C:\5d0jawja.sys” and re-run
Dreamweaver again. We get awarning:

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 52

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

WARNING! Security Resources Tamper

Ciue to security problems, vour free trial of
thiz software has ended. If vou have any
questions, please contact technical support
by e-mail at support@releazenow. com or call
[B00] 210-5517 toll-free in Marth America
and [EB0] B22-1433 from other intemational
|ocations.

Figure 18 Tamper Warning

Re-run FileMon. This time, we find one more suspicious file—
C:\WINNT\System32\e81htwwt.dll

Delete it and Dreamweaver is now “refreshed”.

Why there is e81htwwt.dll? This may due to how ReleaseNow handle lockout. Obviously,
if information in the .sys and registry expires, the system doesn’t need to check
e81lhtwwt.dll and can disable thetrial to the user. That’s why we don’t see e81htwwt.dll in

the first file monitoring process.

To conclude, ReleaseNow in Dreamweaver uses the followings to store secure
information:

1. HKCRuItxfilé\ (registry)
2. C:\bdOjawja.sys(file)
3. C:\WINNT\System32\e81htwwt.dll (file)

We are done — somehow, athough not ‘user friendly’: the user is required to manually
delete these entries when system expires. But at |east, our approach 3 works.

Is there any other smarter method, which for example, patch the program checking
permanently or “unlock it” into FULL version?

YES! See next attempt for a new approach to the problem.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 53

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

8.7 Final Attempt

In case study 2, we have already come across programs protected by packing. They come
with a small loader, which decrypts the packed content (may be stored with the loader
executable or external) in real time and jump to it.

Observations:

1. Dreamweaver.exeis 244KB in size (too small for such a program).

2. Recdll that all the .tty file (except dreamtky.tty) isavalid PE.

3. Dreamweaver.tty is 6332KB in size (reasonably large to be the actual Dreamweaver
executable, may beit iseven packed!).

So is Dreamweaver.exe aloader?

8.7.1 Dreamweaver .exe as a loader

Yes. Run Dreamweaver.exe and stop at the “Buy, Try, Exit” screen. Press Ctrl-Alt-Del,
we see that there is only one dreamweaver.exe process in memory.

Now, press “Try” and get into Dreamweaver editor. When we look at the process list
again, there are two: Dreamweaver.exe and Dreamw~1.tty.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 54

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

H windows Task Manager o] B4

File Options Yiew Help

Applications Processes |Peanrmance|

Image Hame | pio| crul cpuTime | Mera

AcraTray.exe 1154 ao 0:00:00

ZMDLEXE 1552 ao 0:00:00

CMD.EXE 173 00 0:00:00

COnime, exe 1032] oo

ZP555M1.EXE 305 ao o:00:1z2

Z5RSS.EXE 172 ao

DREAM~1,TTY 1512

Direarnweaver, exe 1188 0z

EM_EXEC.EXE 1143 00

EXCEL.EXE 1044 ao

explorer. exe 916 01

fpdisp4.exe 1104 00

Icq.exe 1240 Jul]

internat. exe 1168 aa

lnadgm. exe 1116 00

L3453, ERE 23z 00

minilog. exe 244 00

MSinin, gxe 1192 ao

4] |

End Process |

Processes: 46 |CPLI Usage: 3% |Mem Usage: 241628k | 7A0576K v

Figure 19 Windows Process List

This suggests that Dreamweaver.tty is the real executable and Dreamweaver.exe is merely
itsloader, enforcing security check.

| first renamed dreamweaver.tty into tty.exe, and an icon appeared before its filename, the
same icon as the one in dreamweaver.exe. It isagood sign.

Then | run it, and got an exception error.

tty.exe - Application Error ﬂ
The exception Privileged instruction,
{0xc0000096) occurred in the application at location Ox004015d5,

Click on QF to kerminate the program
Click on CANCEL to debug the program

Cancel |

Figure 20 Execution Exception

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 55

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Disassembly the file, the contents seem to be good (not packed/encrypted) and the import
table (see Case Study 4) isintact. No sign shows that it is protected by a packer/encrypter.

This result suggests that Dreamweaver.exe also acts as a patcher!

8.7.2 Dreamweaver.exe as a patcher

Dreamweaver.tty should be the original exe of dreamweaver, but parts of its content are
scrambled (at least those at the front because we get an exception from the very
beginning). Whether Dreamweaver.exe patch it or not will depend on if we can pass the
security check.

Patching can be done on the disk image before loading into memory, or in memory
patching. Patching to disk image first before loading is silly because any abnormal
program termination would let the “fixed” copy of executable image retained in the disk.

Having the experience of process patching in previous section, | would guess the
dreamweaver.tty would be patched at runtime, after we have passed the security check. In
this way, we are FORCED to go through the security checking in the loader because only
it can patch the tty file.

8.7.3 Annihilating Dreamweaver

Creating a hew process in a process needs the APl “CreateProcessA” to be used. Type
“bpx CreateProcessA” in SoftICE. The detailed disassembly text after break is in the
Appendix B.

:00401AA6 52 push edx

:00401AA7 53 push ebx

* Reference To: KERNEL32.CreateProcessA, Ord:0044h
I

:00401A A8 FF15C0504300 Call dword ptr [004350C0]

:00401AAE 85C0 test eax, eax

:00401ABO0 751F jne 00401AD1

:00401AB2 53 push ebx

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 56

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

* Possible StringData Ref from Data Obj ->"Error"
:00401AB3 68CC914300 push 004391CC

* Possible StringData Ref from Data Obj ->"Error loading process'
:00401AB8 6884914300 push 004391B4
:00401ABD 53 push ebx

* Reference To: USER32.MessageBoxA, Ord:01BEh
:00401ABE FF1530534300 Call dword ptr [00435330]

If we put a breakpoint at 00401AA6 and dump edx’s content on break, it shows
“C:\PROGRA~1\MACROM~1\DREAMW~1\DREAMW~1.TTY”. This suggests that
we are guessing right.

The above disassembly code means: if the CreateProcess success, we go to 00401AD1,
otherwise, an error MessageBox was created.

Win32 Debug API

After 00401AD1, we got two new APIs, the WaitForDebugEvent and
ContinueDebugEvent. What are they? According to [31], Win32 has several APIs that
allow programmersto use some of the powers of adebugger. They are called Win32 Debug
APIs or primitives. With them, you can:

1. Load aprogram or attach to arunning program for debugging.

2. Obtain low-level information about the program you're debugging, such as process|D,
address of entry point, image base and so on.

3. Benotified of debugging-related events such as when a process/thread starts/exits,
DL Ls areloaded/unloaded etc.

4. Modify the process/thread being debugged (3 ProcessPatching!

Therefore, with the Win32 Debug API, everyone can code a Debugger!
WaitForDebugEvent and ContinueDebugEvent are two of these APIs.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 57

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

The Debugging Concept

These are the steps used in debugging a process, called the debuggee:

1. Create aprocessor attach your program to arunning process.

Wait for debugging events.

Do whatever your program want to do in response to the debug event.
L et the debuggee continues execution.

Continue this cycle in an infinite loop until the debuggee process exits.

g s D

The WaitFor DebugEvent function waits for a debugging event to occur in a process
being debugged. The ContinueDebugEvent function enables a debugger to continue a
thread that previously reported a debugging event. The DEBUG_EVENT structure
describes a debugging event. Please refer to Appendix A for details.

Of particular interest is the DebugEventCode. Below is its possible valu