
Ghiribizzo’s Cracking Tutorial

How to Protect Better : A Strategy

How to Protect Better

Becoming a good cracker requires a holistic approach. I have
always recommended learning programming (esp. assembly) and
virus writing as a complement to cracking. It is also fitting that
we learn how to protect better in order that we can crack better.

PGP and Signed Tutorials

My tutorials and programs should be signed electronically using
PGP. PGP 5 supports DSS/Diffie-Hellman keys. These keys are
not supported by previous versions of PGP.
You should check the signature to make sure that the tutorial
and especially its program files have not been tampered with. All
cracks, tutorials and zip files I release will be signed. This will
prevent tampering and will hopefully reduce the chances of viral
infection.
My signature will also be the only way you can identify me as
my email address will often change.

My Web Site: http://www.geocities.com/Athens/3407
My Email: Ghiribizzo@geocities.com
My Backup Email: Ghiribizzo@hotmail.com

This document is Copyright © 1997 by Ghiribizzo. This document may be distributed non-commercially, provided that
is it not modified in any way. This publication may not be sold or packaged, in whole or in part, as a service, or with a product
for sale in any form without the prior written permission of the author. This document is presented with no warranties or
guarantees of any kind including fitness for any particular purpose. If you use the information contained herein, you do so at
your own risk.

As a programmer, I have always resigned myself to the fact that no matter how good protection is, it
can ALWAYS be defeated. The only sure way of securing a demo of a commercial product is to release the
demo WITHOUT the code for the ‘registered’ features. There should be no mechanism for registering using
name/serial as these can always be broken (as can ANY form of protection which re-enables features) and
name/serial pairs are rife on the internet.

Leaving aside the search for a perfect system. Let’s consider a program which has been ‘crippled’ and
can be reactivated in some manner. As the program CAN be activated, it can also be cracked. The protection
should therefore not aim to make the software uncrackable, but to make it as difficult and nasty as possible
for the cracker. Now let us consider strategy. How do crackers work? ‘Dead Listing’ and ‘Live Debugging’
are the main techniques and it is on these two techniques that the protection will focus on. The protection
must focus on both, as the cracker can use both to crack the program.

Remember: as well as making the program difficult to crack, we want to make it nasty to crack. To do
this we want to crack the cracker. We want the crackers life to be a living hell as he tries to crack the
program. We want him to hate cracking it so much that he will give up. I don’t think this form of protection
has been considered by others before. So bearing this in mind, let’s see what we can do with the two
techniques.

Live Debugging

An important part of cracking is to locate the protection code. This makes it a target for our
‘psychological protection’ as finding the code can be considered a ‘chore’ for crackers - the good fun being
trying to circumvent the code and find creative ways of doing it - it also becomes a good point to make the
cracker give up. After all, finding a way around a piece of code is a mental challenge (an we never give up on
those, right?) but finding the code is always less fun. If we let a cracker step though our code at will and
quickly locate the relevant sections, then this chore will be over quickly.

How can we stop this? Liberally scatter anti-debugger tricks throughout the code. Not just at the
beginning (but make sure there is a lot at the beginning just to scare off the newbies and also to quickly
demoralise the cracker) but deep inside the code - as deep as possible. Don’t let the cracker step over a call,
make him painfully trace though every single one by putting in code which me must crack to continue. If he
doesn’t punish him. You can warn him a few times first by deleting the registry etc. But if he doesn’t take the
hint, reformat the hard disk! That should get his attention. Even a corny

call protection routine
cmp al,00
jne beggar off section
call another routine

We come across this stupid protection again and again. Easy, we’ve run the beggar off section during
a dry run, so now let’s skip over it and go straight to the ‘good guy’ call. Oops. In fact, this was a fake
protection check. The cracker has just inadvertently run a call to a virus (learn to write viruses - you’ll learn
tight efficient assembly and your own viruses, if well written, will not be able to be detected by current virus
scanners - of course you cannot put this in commercial programs as it is illegal).

Don’t use standard DOS interrupts or API calls. Write your own custom code. This stops crackers
from just breaking on them. Which reminds me, remember to detect SoftICE being loaded in memory and do
something about it!

Now that the cracker knows to tread lightly, we make his task seem dauntingly impossible. For those
of us who have carefully written an assembly program... They just don’t lend themselves to protection the
code is too small and can easily be searched though. You need to junk the code. Write it in a high level

language, write it for Windows 95 bloat the code so that the cracker must trace for hours. It will also make
dead listing difficult as the cracker will need to examine hundreds of pages.

Now that all this preparation has been done, bury the protection routine deep in the code at several
places - make them inline so that a single call can’t be found and references targeted. Protect the protection!
Look for the weak spots - a JNE which can be changed to a JMP. Target the opcodes and do a compare
elsewhere to check for this tampering. Place this second check after the protection and he’ll know it at debug
time. But place it before and then when he patches it... bye-bye hard disk. Let’s hope he checks his work
before distributing the crack. This leads onto my next point (thinking about this I must once again advise you
all to learn to program and write viruses as many tricks can be taken from viruses) put a random counter in
the protection’s protection. Make it so that the hard disk format occurs on a 1 in 8 chance. Place the
protection before so that it is not caught at debug time. When the patch is made, the cracker will not know
until hundreds of lamers write to complain... (these are nasty techniques - as a cracker, I am cringing at the
thought of them - let’s just hope this stays among crackers ;-)

Dead Listing

Now that you’ve made the ‘Live’ technique difficult, let’s do the same for dead listing. Make sure
you’ve junked the code to make the dead listing huge. Don’t be stupid and have strings like ‘invalid
registration number’ hanging around. In fact have nothing linked to the protection hanging around like that.

Spread the protection throughout the code don’t have it all in one call etc. Piecing single instructions
spread over 10s of pages is difficult.

Encrypt the code. Using xor is OK but use other techniques for variety, you don’t want the encryption
to be pinned down on searching for xor instructions (again spreading the decryption will camouflage it).
Encrypt the code and data in different sections using different encryption. This means the defeat of one
encryption does not give the code. So once you’ve encrypted the whole of your code, in 10 sections, say,
with 10 different ‘algorithms’, the cracker must decrypt them at 10 different points - most of them buried
deep into different parts of the code which will give him the problems of the ‘Live’ technique. You can also
encrypt the whole lot once more near the beginning using all the tricks and peppering the decryption routine
with anti-debug code. Use all the tricks to make decrypting difficult (learn assembly - you come up with some
really cruel ones! It must be where I get the ideas for this document too!) and remember - punish the cracker
by damaging his computer.

Summary

My strategy should be clear: make the ‘Live’ approach dangerous and difficult and make ‘dead listing’
impossible to force the cracker to use the ‘Live’ approach. I have introduced the idea of attacking the cracker
as a means of protection (the best defence...). I may write a program to demonstrate some of my ideas. Any
takers?

As an aside, writing your own packer can be an effective way to protect your code. But even as I
write this, I hear that there is an unpacker which uses a heuristic technique to defeat unknown packers. I have
not studied this unpacker yet - I believe it is called Tron - but I’m sure that should it be relied upon, then
measures can be taken to actively defeat it (much as there are many tricks against SoftICE).

I hope that this has given you some food for thought. Keep on cracking... only now, be a bit more
careful! ;-)

	Ghiribizzo's Cracking Tutorial
	Live Debugging
	Dead Listing
	Summary
	Go to Ghiribizzo's Homepage

