InTether protection system...reversing kernel code, reversing data,
coding reversing tools, ...basically it’s the perfect reversing
training field!

Part 1

Back from a long period of silence with a tutorial for all (serious) crackers and reversers that theydon’t

want to waste their time to play with kiddy packers/crypters.
Like always this is a reversing tutorial, so if you’re looking for only a way to crack InTether
protection...you have opened the wrong one...and probably you are a not a reverser too. I’'m sory.
In the title I have defined InTether protection like the “perfect reversing training field”, this because with a

real reversing approach it possible have a lot of fun coding tools to better understand not only how this
protection works but also how parts of our OS works too.

The tutorial is made of 2 parts because it’s quite long and because I want to give you the approach that 1

have used here, with the background too.
Lets start!

*%% The OS is Windows 2000 professional with NTFS file system ***
*** And please forget my horrible english ***

First a briefly description of the protection that it has given me the inspiration.

InTether protection system (www.infraworks.com)

This is an extract of the help file, which explain better what is and how it works:

“ With InTether Desktop, you can control exactly who receives your data and what happens to your file once it
is received. Using revolutionary technology, InTether Desktop offers the following advantages:

Most secure Digital Property Protection technology available.

Multiple layers of defense and active file access monitoring.

Performance that is independent from file content and content transfer method.

Compatibility and ease-of-use with existing software, readers and players.

Restricted access to InTethered files by using sender-established permissions such as time/date to

view and time to delete the document.

e Prevention against any unauthorized changing, printing, dissemination, forwarding or screen-
capturing of InTethered content.

o A self-destruct mechanism that is imposed on those attempting to hack InTethered content.

o Content owners will use InTether Desktop’s Packager to package their file(s) with customized
permission. The package can then be sent to any recipient. InTethered packages can be delivered via
email, web, FTP, through shared network drives and on CD-ROM.

e Recipients of InTethered content must have the InTether Receiver to read the secured file(s). The
InTether Receiver not only allows access to InTethered content, but in extreme cases, the InTether
technology will delete the file and any remnants of the InTether Received technology if it detects brute
force or unauthorized access attempts to the dat. *

http://www.infraworks.com/

Simple. In few words it permits to protect any static data (documents, images, movies etc) applying around
them a custom protection (limit time to view the file, limit number of trials, or the classic password protection,
etc). Someone can say “...Oh yes another pgp clone!” ...and in part it’s true but there is something in the
above words that push Intether ahead, or at least this is what they want to show. So the point that has
stimulated my brain was this:

“ Prevention against any unauthorized changing, printing, dissemination, forwarding or screen-capturing of
InTethered content.”

Hmm...this is what I define a coding challenge! Cool! Realise this in a serious and secure way (against the
crackers/reversers long hands) is not an easy task. I mean protect a document file with a good encryption
algorithm it’s easy and (if well done) secure , pgp or kremlin are good example. There is no point to discuss the
encryption algorithm used in InTether when it works like a pgp clone and there is no point to reverser that.
Instead what is really interesting is to see how in deep they have integrated the protection to prevent (a
malicious user like me) doing a copy of a protected document and freely printing,moving,changing or screen
capturing it. So lets see this protection:

After the installation we have several links on our desktop:

- InTether Packager : it’s the main IDE. It creates an InTether protected copy of a data file.

- InTether Content Manager : Permit to manage all InTether files active on our disk,
basically any opened protected file on our system.

- InTether UID manager: Permit to manage all UID (unique reader user identifier) when we
want to protect a file and permit only at the specific user (UID) to view the file.

- Packaged Content directory: By default all our created InTether files are saved here.

- Received Content directory: By default when we open a InTheter protected file it’ll be
saved in this directory.

Ok, now our interest is obviously on InTether Package IDE to create our first protected copy of a txt file.
First we create a simple txt file called FooA.txt and with a stupid text inside:

Hello World from FooA!

So now we have a file to protect, FooA.txt, with a size of 22bytes. It’s important keep in mind every single
detail of what we are doing... later you’ll understand why.

We run the InTheter Package IDE and we select our text file to protect, we leave the default package saving
path and we select only the option “File may be read for...” and we set the time at 10mins. We don’t use any
other option in this tutorial for now. Then we click on “Create Package”. Now our text file is protected. If we
open the directory Packaged Content, we have our protected file FooA.ith

OK now lets see what happen when we run our protected file.

A nagscreen tells us the main characteristics of this file, type of protection (time limit) and where we want to
save our file on disk . We save it in the root and we click on “Save&open”.

Now our txt file is saved in the root directory with its original name FooA.txt and then it is open inside
notepad.

If now we close notepad and we open the file FooA.txt just saved, a nagscreen this time tell us how much time
we still have to view the file and then if we click on the “open” button the file will be open in notepad.

If we leave the file open for more than 10 mins, automatically notepad will be closed and our FooA.txt will be
deleted from disk. But for now we don’t want that so close it before that the 10mins expire.

We need to see now if we can do a copy of this file...In the shell, if we try to copy the file in another directory
the result is only a file empty (0 bytes), same if inside notepad we try to save the file.

So we can distinguish two situations here, one, when we try to do a copy of our protected file in a shell
(explorer) and second, when we try to make a copy using the “save” option inside a program.

In both situation, from a system point of view, the copy operation is the result of a series of I/O requests
directed to the file system driver so for the system doesn’t exist difference. InTether has needed to monitor any
I/O request sent by our text editor and filter the writing requests to prevent us to save a copy of the protected
file.

But for InTether it’s not enough doing this because two are the situations that we have seen ...and prevent a
copy (write requests) from inside a shell mean filter any write operations that our shell sends to the file system
driver, basically a disaster!

So during our first opening on a protected file, InTether save the file with 0 byte basically our FooA.txt is
empty and the real content is stored in another place (obviously encrypted ©).

Doing this, we can’t make a copy in anyway even if InTether filters are unloaded . In more InTether avoids the
problem of filtering any window shell (explorer.exe) write operation.

Ok but this is only my logical deduction and we have nothing in our hands to prove this especially because if
we look at the properties of our FooA.txt, explorer reports the real size 22 bytes and not 0. But don’t forget that
any user operation on a file is nothing else that an I/O request sent to the file system driver and InTether filters
can trap it and fake it!.

Anyway...the best thing now is to have a confirmation about my theory so we need to check if the file

FooA.txt is really 0 bytes, in this way we can take the right direction to find our real file and make it a copy.

The only way to be sure at 100% about our theory is read directly the file from the disk...I mean a “raw
access” to see exactly what is really present on our NTFS disk structure for FooA.txt file. In more we can
reduce at the minimum any InTether disturb (filtering/faking and who know what else ©)

Here is required a little theoretical part on the NTFS on-disk data structures...because today I don’t think that
there are anymore virus writers that use on-disk data structures directly...©

Ok briefly, our disk is divided in sectors, which are addressable blocks of disk (on x86 the size of each sector is
512bytes).

Clusters are the number of sectors that the system can manage. NTFS internally use only clusters .

So if I have a file of 1050 bytes to save on disk, and the disk has a cluster size of 1 (1 sector x cluster) ,NTFS
file system use 3 clusters to save my 1050 bytes or 3 sectors.

NTEFS uses Logical Cluster Numbers (LCNs) when it refers at physical location on disk. All clusters, from the
start to the end of our disk, are numbered and these numbers are the LCNs.

Basically if we have a LCN and we know the cluster size and the sector size we can calculate the physical disk
address.

PhysAddr = LCN * ClusterSize * SectorSize

PhysAddress are used by the disk driver interface.

Internally NTFS use Virtual Cluster Number (VCNs) to number the clusters within a file. Basically VCNs
number the clusters in a particular file from 0 to the end of the file. VCNs can be mapped at any LCNs on a
disk, this mean that the VCNs of a file can be not necessarily physically contiguous.

Another important NTFS on-disk structure is the Master File Table (MFT). In NTFS all data stored on a disk
are presented as files.

The MFT is an array of FileRecords. The size of a FileRecord is stored in the boot sector and on win2K it’s
always 1Kb.

A filerecord is the ‘description’ of the file, basically each entry in the MFT describe a file or a directory or a
metadafile.

The first 12 entries are fixed and describe NTFS metadafile, 4 are reserved and all the others are used for files
and directories. Here a simple scheme of the MFT:

$Mft (MFT)

$MftMirr (MFT mirror)

$LogFile (Log file)

$Volume (Volume file)

$AttrDef (Attribute definition table)

\ (Root directory)

$Bitmap (Vol cluster allocation file)

$Boot (Boot sector)

$BadClus (Bad cluster file)

$Secure (Security settings file)

$UpCase (Uppercase char mapping)

$Extend (Extended metadata dir)

Not used

Not used

Not used

Not used

User file and directory

The first 12 MFT metada files have a name that begins with $. The first MFT entry is the file record for the
MEFT itself.

I don’t explain what are these metada files because we go off topic and they are not important for this tutorial.
But I have to explain what are and how are made up in general these MFT filerecord entries especially a MFT
filerecord entry which describes an user file.

From a general point of view a MFT entry is made of a header and a series of Attributes. Each of these
Attributes describes the file/directory/metadata file that the filerecord refer to.

Included with this tutorial there is the NTFS.inc file which has the definition of some Attributes useful for this
tutorial.

Each Attribute can be “resident” or “not resident” . If an Attribute is resident means that all the attribute values
are stored inside the attribute structure. If an Attribute is not resident means that some values are stored outside
the MFT entry and the Attribute stores the LCNs of the clusters where are stored the values of this non resident
attribute. This happen when an Attribute stores values with a big size...a classic example is the AttributeData.
For ex. the AttributeData in a MFT entry (that describe a file) is the attribute that stored the real data for a
file...the binary image of an executable, or the text of a text file, or the binary image a jpg etc. How you can
understand because of the limited size of each MTF entry (1Kb on win2K)...often the data of a file can’t fit in
its MFT entry...so NTFS creates the AttributeData ‘non resident’ and it store the LCNs of each cluster used to
store the data of this file.

But better to see a real example...I suggest to use the ntfs.inc file to understand better each byte in the
following MFT entry:

This is the MFT entry of the file BOOTLOG.TXT on my harddisk:

00000000 FILE*....ZR.....

00000010| 1100 0100 3000 0100 D801 0000 0004 0000|....0...vinnn...
000000201 0000 0000 0000 0000 0400 6100 0000 0000] A,
000000301000 0000 4800 0000 0000 1800 0000 0000(....H...........
00000040 3000 0000 1800 0000”0049 130F 57A7 C101|0........ I..W...
00000050| 0049 130F 57A7 C101 8030 C481 A6A7 ClO01|.I..W....0......
00000060| 0000 2290 C5A6 C101 0600 0000 0000 000Qf.." ..o
00000070/ 0000 0000 0000 0000|[3000 0000 7000 0000 0...p...
00000080 _0000 1800 0000 01005800 0000 1800 0100]...uuu.. Xeveeonn
00000090| 0500 0000 0000 0500 0049 130F 57A7 C101|....vu.... I..W...
000000A0| 0049 130F 57A7 C101 0049 130F 57A7 C101|.I..W....I..W...
000000BO| 0000 2290 C5A6 C101 0OO06A 0000 0000 000O0(|.."™...... Jeeoon.

000000CO|E268 0000 0000 0000 2200 0000 0000 0000|.h...... " ...
000000D0| 0B03 4200 4F00 4F00 5400 4C00 4F00 4700]..B.O.
000000E0 | 2EQ00 5400 5800 5400/[5000 0000 9800 0000 ..T.X.
000000F0 _0000 1800 0000 0200][7C00 0000 1800 0000]........
00000100[0100 0480 5C00 0000 6C00 0000 0000 0000]....\Nv.luvennn.
000001101400 0000 0200 4800 0300 0000 0003 1400|...... =
00000120 |FF01 1F00 0101 0000 0000 0001 0000 0000 |.ueeeeueeeeennn.
000001300000 1400 FFO1 1F00 0101 0000 0000 0005 .ceeeeueneeenn..
00000140(1200 0000 0000 1800 FFOLl 1F00 0102 0000|.ueeeuuneeeenn..
000001500000 0005 2000 0000 2002 0000 0102 0000|.v.. e vevunn.
00000160|0000 0005 2000 0000 2002 0000 0102 0000|.v.e e vevenn.
0000017010000 0005 2000 0000 2002 0000 0000 0000 .v.s wun vuunen..
00000180[8000 0000 5000 0000 0100 4000 0000 0300]....P..... @.....
00000190[0000 0000 0000 0000 3400 0000 0000 0000 |..ev.... 4.......
000001204000 0000 0000 0000 006A 0000 0000 0000 |@........ I,
000001BO|E268 0000 0000 0000 E268 0000 0000 0000]|.he...... heooo..
000001C0[3120 7290 0021 15B0 1200 0000 0000 00001 roo!uuueueeeno...
000001D0 FFFF FFFF 0000 0000 0000 0000 0000 0000 ..vvuuuuneeeunn..
000001E0 0000 0000 0000 0000 0000 0000 0000 0000 . .vvuueeeennn..

How you can see the offsets are relative at the start of the MFT entry for better reading.
Lets go to analyse this MFT filerecord entry for the file Bootlog.txt:

Each MFT filerecord start with a NTFS RECORD_HEADER structure (see the ntfs.inc for the
meaning of each byte).

—— Just after there is the FILE RECORD_HEADER structure (see the ntfs.inc file for the meaning of
each byte).

—— At the offset 30h (from the start of the MFT filerecord) there is the first Attribute for our file.
Each Attribute start with an ATTRIBUTE structure, which is common for resident attribute and for
not resident attribute (see the ntfs.inc file for further details). The first dword (AttributeType) defines
the type of the Attribute that follow and it can be one of these values:

00000010h AttributeStandardInformation
00000020h AttributeAttributeList
00000030h AttributeFileName
00000040h AttributeObjectld

00000050h AttributeSecurityDescriptor
00000060h AttributeVolumeName
00000070h AttributeVolumelnformation
00000080h AttributeData

00000090h AttributeIndexRoot
000000A0h AttributeIndexAllocation
000000BOh AttributeBitmap

000000COh AttributeReparsePoint
000000DO0Oh AttributeEAInformation
000000EOh AttributePropertySet
000000FOh AttributeLoggedUtilityStream

So for our MFT entry the first attribute is an AttributeStandardInfomation.

Another Important value inside this ATTRIBUTE structure is the NonResident byte, which tells us if
the attribute data is resident inside the MFT entry or external. In our bootlog.txt the first Attribute has
this byte 0 so the attribute value is resident.

After the ATTRIBUTE structure we can have or a RESIDENT ATTRIBUTE if the NonResident
flag is 0, or a NONRESIDENT ATTRIBUTE structure if the NonResident flag is 1. For both
structures see the ntfs.inc.

In our example we have that the first Attribute is resident so just after the ATTRIBUTE strucure we
have a RESIDENT ATTRIBUTE

— Then we have the data of the specific Attribute. For the first Attribute we have the
AttributeStandardInformation. (see ntfs.inc file).

This for any Attribute in the MFT filerecord.
So each Attribute is made of an ATTRIBUTE (=) structure plus or a RESIDENT ATTRIBUTE (~)ora
NONRESIDENT ATTRIBUTE (=) and the data structure of the specific attribute (=).

But exactly what is stored in the Attribute if the Attribute is marked NonResident ?...lets see our example...we
have the last Attribute, at offset 180h ,defined as NonResident and we have a NONRESIDENT ATTRIBUTE.
The type of the Attribute is 00000080h (AttributeData) which is the real data of our file, basically the text
stored in the bootlog.txt. Often the real data of a file can’t fit in an 1kb MFT entry (like for this file) so what is
stored inside the Attribute in the MFT are the LCNss (logical cluster numbers) with the size of each block of
clusters, but take the example above, at offset 1COh we have the resident part of the Attribute:

000001CO 3120 7290 0021 15BO 1200 0000 0000 0000 I r..!..........

These bytes have this meaning; the first byte (31h) defines, in the low nibble (4 bits), how many bytes we have
to take (just after this value) to have the number of LCNs used to store the text of our bootlog.txt. The high
nibble (4 bits) defines how many bytes we have to take (after the bytes of the size) to have the starting LCN.
So we have:

31h=0011 0001b —-> LowNibble=1/HighNibble=3

1 is the number of bytes to take after the 31h to have the number of cluster...... 20h
3 is the number of bytes to take after the size bytes to have the starting LCN,in our case are ... 009072h
which define a:

block of clusters : LCNs 009072h to 009092h

This means that at the LCN 009072h on our disk, we have 20h clusters that store our text. But it’s not
finished...after the 3 bytes of the LCN we have another value used like before...21h...so again here the Low
nibble is the number of bytes that we have to take to have the number of clusters BUT the high nibble is a
‘delta’ value to add at the highest LCN resulting from the previous block. Basically from the previous block we
had

LCNs 009072h to 009092h
So we have :

21h=0010 0001 b -> LowNibble=1/HighNibble=2
1 is the number of bytes to take after the 31h to have the number of cluster...15h
2 is the number of bytes to take after the size bytes to add a the LCN 009092h, and in our case are ... 12B0Oh
Which define a :

second block of clusters :LCNs 00A342h to 00A357h

This last operation is performed until we reach a 00 bytes...which mean no more used clusters.

Basically if we read 20h cluster from the LCN 009072h and 15h clusters from the LCN 00A342h we have our
bootlog text.

Important is that the delta is a signed value so if the highest bit is set the delta is a negative value.

Now probably you can image how a defragmentation utility works...more blocks we have for a file and more
this file is fragmented ©.

A MFT filerecord entry don’t have a fix number of Attributes and the type of these Attributes depend of the
characteristic of the file that it describe ...files, directories or metadafile.

A dword FFFFFFFFh in the Attribute. Type field , marks the end of the Attributes for that MFT filerecord. (ex.
for our bootlog.txt filerecord we have the end of the Attributes at the offset 1DO0h).

A final note, how I have said each file, directory or metadata file on our harddisk has a filerecord entry in the
MEFT, so everytime we save a new file or we create a new directory , the file system try to find the first
filerecord not used (bit 0 in FILE RECORD HEADER Flags clear) to use for the new file. Only if there
aren’t ‘not-used’ filerecords...NTFS allocates a new MFT filrecord entry.

Ok we can stop here with these NTFS stuff because this is enough for the purpose of this tutorial...and I can’t
write a tutorial to explain all NTFS on-disk data structures ...It’s not Christmas time ©.

Now it’s time to write some code to access to our protected text file ...do you remember our FooA.txt ? ...cool
now it’s time to read it directly from its MFT filerecord and avoid to have InTether playing dirty filtering
tricks...so we can see if my theory is correct....InTether save FooA.txt empty just to say “...hey user! if you
want to open this protected file just double click here that after I take care to find it and show it to you for the
limited time © .

Ok attached at this tutorial there is the NTSF.ASM source code (and the compiled version), which is well
commented and very simple. It gives us 3 options:

1. Dump the entire MFT (we see later for what it’s useful)

2. Dump a file; basically make a copy of the file using the info that I have explained above on the
MFT filerecord entries. It requires a MFT entry number, from a MFT dumping (option 1).

3. Dump a MFT filerecord entry. It requires a MFT entry number, from a MFT dumping (option 1).

First thing to do is make a dumping of our MFT, so just click on the “Dump MFT entries...” after few seconds
we’ll have a file in the same directory called MFTEntries.txt, with each MFT filerecord. We search in the list
our FooA.txt and we take note of the MFT entry number. Now we insert the number in the edit box and we
click on “Dump MFT entry at...”. In the same directory we’ll have a XXXX.txt (where is xxxx is the MFT
number) file with a binary dumping of the FooA.txt MFT entry.

Now you know what these bytes means ©what interest us is the Attribute AttributeData (type =
00000080h). I'm sure you can locate it easly now.... How we can see this Attribute is Resident but nothing is
stored inside and no definition of clusters blocks too (the attribute is Resident). So this file is 0 bytes for real !!
And when in explorer we look at the propriety of FooA.txt , InTether fake the result (fake the I/O request) and
return at the shell the size of the file which is obviously taken from another place on our hard disk.

Now the question isWhere is saved our FooA.txt file ?
Meanwhile you call Sherlock Holmes....I go in the Toilet ©. Bloody Stella...drink yep! Another!

Back!...ok the first (and logical) thing that comes in mind is this: everytime we run an InTether file protected
for the first time, InTether save a dummy copy with its name and size 0 and another copy hidden in same place
with the real file (probably encrypted) .

When we open the dummy file, InTether traps this and redirect the reading operation on this hidden file.

So we have to verify this...and to do this we can use our fresh NTFS utility (if you don’t like you can use any
other monitoring tools and skip over to next part but this is a reversing tutorial so if you want to learn
something follow it in every part because all has a sense ©.

First thing to do is protect another file...we create a simple txt file named FooB.txt with a stupid text inside:

Hello Reversing World from FooB!

Now the size of the file is 32 bytes.

Then we protect the txt file with InTether packager and the same option used before for the FooA.txt file. So
time limit of 10mins. At this point we close all applications and we use our NTFS.EXE to do a dumping of our
entire MFT.

NTES utility creates a MFTEntries.txt file in the same directory...now we open the FooB.ith file and in the
nagscreen we select “open&save” ...after that notepad has opened the text file....again with NTFS utility we

create a dumping of our entire MFT . OK Now we have 2 MFTEntries.txt file...one before that InTether has
saved&opened FooB.txt file and one after.

Now if we compare these two files we can have a good picture of all new files that have been created during
the InTether save&open operation. I suggest to use “compareit” a very good shareware comparing tool...so
this is the result on my harddisk:

Only 3 MFT filerecords has been updated, lets see in details:
895835136 FILE 0 0 PACKAG~1.CFG 895835136 FILE 1 0 MFTENT~L.TXT

The MFT filerecord for the file PACKAG~1.CFG wasn’t used when we have taken the first dump and the file
itself wasn’t “officialy” present on disk but deleted. So windows has used this MFT filerecord to store the
filerecord for the new file MFTENT~1.TXT (MFTEntries.txt). Nothing of suspected here ©

Lets take the second:

895847424 FILE 1 0 FooB.ith 895847424 FILE 0 0 FooB.ith

During the first dumping of our MFT entries, we had the protected file FooB named FooB.ith. After that
InTether has saved&open our text file, it has deleted the protected version FooB.ith. So the MFT filerecord is
changed from “Used” to “NotUsed”. Nothing of suspected here too ©

So give a look at the third:

895853568 FILE 0 1 is-8JCDO.tmp 895853568 FILE 1 0 FooB.txt

The MFT filerecord for the file is-8JCDO.tmp wasn’t used like for the file packagl.cfg above, So windows has
used this MFT filerecord to store the filerecord for the new file FooB.txt, our protected text file... ... “empty”.
Again ...nothing of suspected here ©.

Hmm...hmm...so InTether doesn’t create a hidden file everytime we run an .ith file...but use one single file
probably hidden and created during the installation or at the first run of the InTether Reader.

Cool now we have a better picture of what happen ...it’s time to look more near at these InTether filter drivers.
We know that there is one file system filter driver for sure so we need to know the name of it because I suspect
that it’s not the only kernel mode module of the InTether protection.

Time for sice now! We load the ntdll.dll export in sice and we set bpx on NtWriteFile, we leave sice and
straight away sice breaks on the NtWriteFile in the ntoskrnl.exe.

Now to jump inside the file system driver we can remove the bpx on NtWriteFile and set a bpx on
TofCallDriver...in few word the NtWriteFile is the exported kernel mode function called indirectly from the
user mode WriteFileA api function (or directly in kernel mode from kernel mode code)...ntoskrnl in turn calls
the file system driver with IofCallDriver...so we leave sice and straight away sice break inside IofCallDriver
which call the right routine inside the file system...which should be the Ntfs.sys (windows NTFS file system
driver). We step inside IofCallDriver until we reach :

call [eax*4+ecx+38]

we step in and we should be inside the Ntfs.sys...but because InTether has put its own file system filter driver
we are now inside.... gdfs.sys ...got it!

Ok now we have the name...and because I’m a curious guy...we go inside our windows registry to give it a
look. Indeed under the HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services we find, not only
gdfs.sys registered but also a series of its “friends” © :

- Dg32

- Dganchor
- Dgbase

- Dgcomm

- Dgcrypt

- Dgfs

- Dggdicom
- Dgguard

- Dgiogrid

- Dgpdb

- Dgtdi

- Dgtimer
- Dgvault

- Dgwatch

He'he!...now something tell me that on our system an I/O operation is intricate like a ‘spaghetti plate’ ©.

How we can see there is not only a simple file system filter driver...but also a series of services and drivers
that work together.

Well...now we can start to look inside these drivers, but what we need is a different approach...we can simple
jump in sice and follow an I/O request sent to file system...but we get lost inside the kernel code very
soon...so we need something that tell us exactly where we are and what is happen in the system...a file system
filter driver.

Yes something like the InTether dgfs.sys driver...but adapted for our purpose. Let start to code!

!!!' I don’t want to explain how to code a 2K driver or how to code a file system filter driver in this
tutorial...are not enough hundred of these docs to cover these topics...so I assume that who read from
here know how to code that. I limit only my discussion on some parts of the included code. !!!

The complete source code is attached at this tutorial:

- FFsd.c
- FFsd.h
- FFsdLoader.asm

The FFsd driver will be loaded on demand by FfsdLoader. But I haven’t include the code to unload it on
demand, because unload a file system filter driver is quite dangerous and require to keep track of the IRP
queue to avoid unload the filter during an IRP processing etc. This fsd filter is simple enough for our main
purpose . So when you want unload FFsd filter just reboot the system.

Our FFsd driver support two IOCTL command:

IOCTL_FFSD STARTHOOK Hook the specific drive and start hooking I/O request.
IOCTL_FFSD _ENABLEBPX Enable an int 3 (trapped by sice) everytime an IRP. MJ READ
has been sent to the file system.

The default hooked drive is the ‘C:’ so if you don’t use that you have to modify the FFsd.c and recompile. I'm
sorry for these stupids limits, but there are a lot of lammers around and I repeat all source code is just for
reversing and learning! So if you want to use it at least you have to understand where and what you have to
change in the source code.

Ok lets see some part of the code:

ﬁ***

/!
/! FFSdFastloDeviceControl - here we manage the IRP_ 10 DEVICE CONTROL for our
/! FFsd driver. Basically only 2 ;)
x***
BOOLEAN
FFsdFastloDeviceControl(

IN PFILE OBJECT FileObject,

IN BOOLEAN Wait,

IN PVOID InputBuffer,

IN ULONG InputBufferLength,

OUT PVOID OutputBuffer,

IN ULONG OutputBufferLength,

IN ULONG IoControlCode,

OUT PIO_STATUS BLOCK IoStatus,

IN PDEVICE_OBIJECT DeviceObject)

case [OCTL_FFSD_STARTHOOK: // Hook drive ‘C:’ and start filtering

retval = FFsdHookDrive(0, DeviceObject->DriverObject);
ToStatus->Information = sizeof(ULONG);
break;

case [IOCTL_FFSD ENABLEBPX: // Enable/Disable IRP. MJ READ bpx
if ('bpxEnabled) {

bpxEnabled = TRUE;
telse{
bpxEnabled = FALSE;

}
ToStatus->Information = sizeof(ULONG);

break;
default:

IoStatus->Status = STATUS_INVALID DEVICE REQUEST;
break;

return retval,

}

Our FFsd driver registers a FastlO interface so when it receives an IRP. MJ DEVICE CONTROL the
FfsdFastloDeviceControl routine is called. Here we manage the two IOCTL passed from FfsdLoader.exe.

//**

/!
// FFsdHookRoutine routine - Here pass all IRPs directed to the driver hooked

/! How u can see we hook only IRP. MJ READ. It's enough
/! knowing which files are read and to jump easly from

// here, inside the InTether drivers code.

/1

J A sk sk ks ks sk sk Rk ok

NTSTATUS

FFsdHookRoutine(
PDEVICE OBIJECT HookDevice,
IN PIRP Irp)

{

PIO_STACK LOCATION currentlrpStack = IoGetCurrentlrpStackLocation(Irp);
PIO_STACK LOCATION nextlrpStack = IoGetNextlrpStackLocation(Irp);

PFILE _OBIJECT FileObject;
PHOOK EXTENSION hookExt;
NTSTATUS ns;
BOOLEAN ret;

PFILE STANDARD INFORMATION fileStandardInfo;

FileObject = currentlrpStack->FileObject;
hookExt = HookDevice->DeviceExtension;

// Hook all IRP_MJ READ and get the file name on which is directed this I/O request.
if(currentIrpStack->MajorFunction == IRP_MJ READ) {

FileObject = currentlrpStack->FileObject;
ret = FFsdGetPathName(FALSE, FileObject, hookExt, currentlrpStack, Irp, 0, 0, 0);

}

*nextlrpStack = *currentlrpStack;
// We don’t use a Completion routine. We look at the result inside InTether’s drivers ©.

ToSetCompletionRoutine(Irp, FFsdHooked, NULL, FALSE, FALSE, FALSE);
return loCallDriver(hookExt->FileSystem, Irp);

FfsdHookRoutine is the ‘heart’ of our file system filter driver, but how you can see we are interested only to
trap IRP_MJ READ requests, and then to know on which file is directed the 1/O request. In this way we know
which file(s) are read when we try to read an InTether protected file.

The IoCallDriver function sends all IRPs and in particulary (from our point of view) the IRP_MJ READ
requests down to the next file system driver in the chain ...which will be the InTether filter DGFS.SYS...how
we see later, following the IRP request down, bring us after few lines of the oskrnl code to the caller of the
read operation...and we ‘1l see big stuff there if you have the patience to follow me ©.

Now we give a look at the FfsdGetPathName routine, which give us not only the file name but also all
parameters of the read request.

ﬁ***

//

// FFsdGetPathName - We ask the filename for this IRP. MJ READ hooked and then
/! we give a look at the parameters (bpx enabled)

//

ﬁ***

BOOLEAN
FFsdGetPathName(
BOOLEAN IsFastIO,
PFILE OBIJECT fileObject,
PHOOK_ EXTENSION hookExt,
PIO_STACK LOCATION curParameters,
PIRP irp,
ULONG ReadOffsetFastIO,
ULONG Length,
ULONG Buffer)

ANSI STRING fileName;
PFILE NAME INFORMATION fileNamelnfo;
FILE INTERNAL INFORMATION filelnternallnfo;

UNICODE STRING UnicodeName;
ULONG ReadOffset;
ULONG ReadLength;
ULONG ReadBuffer;
BOOLEAN retval;

fileNamelnfo = (PFILE NAME INFORMATION) ExAllocatePool(NonPagedPool,
MAXPATHLEN*sizeof(WCHAR));
RtlZeroMemory(fileNamelnfo, MAXPATHLEN*sizeof(WCHAR));

if (IsFastlO) {

ReadOffset = ReadOffsetFastIO;
ReadLength = Length;
ReadBuffer = Buffer;

} else {

ReadOffset = curParameters->Parameters.Read.ByteOffset.LowPart;
ReadLength = curParameters->Parameters.Read.Length;
ReadBuffer = irp->UserBuffer;

}

/I Ask at the win fsd driver the filename from the fileobject this is 'legal’ because we are inside an
/I IRP_MJ READ so windows fsd 'knows' already this fileobject.

if(fileNameInfo &&
FFsdQueryFile(hookExt->FileSystem, fileObject, FileNameInformation, fileNamelnfo,
(MAXPATHLEN1)*sizeof(WCHAR),
FFsdQueryFileComplete,IRP_ MJ QUERY INFORMATION)) {

fullUniName.Length = (SHORT) fileNamelnfo->FileNameLength;
fullUniName.Buffer = fileNamelnfo->FileName;
if(NT_SUCCESS(RtlUnicodeStringToAnsiString(&fileName, &fullUniName, TRUE))) {

//if ‘IRP_MJ READ bpx’ is set we can look in sice at each IRP parameters.
//'T have used inlineasm to have these values directly in the registers.

/I EAX = file offset inside the file where fsd have to start reading.

/I EBX = pointer at the (unicode) file name of to read from.

/I ECX = length (bytes) to read from the file.

// EDI = buffer for bytes read from the file.

if (bpxEnabled) {

__asm

{
mov ebx,[fullUniName.Buffer]
mov eax,ReadOffset
mov ecx,ReadLength
mov edi,ReadBuffer
int 3
H
H
}
H
if (fileNamelnfo) ExFreePool(fileNameInfo);
return TRUE;

Ok now we have our FFsd filter driver ready. We need to have softice loaded to use the IRP. MJ READ bpx
so the first thing to do is take care of a little anti-sice code in one of the InTether modules...if we load sice
after few seconds a messagebox tell us that a system debugger has been found and InTether will be stopped.
The anti-sice trick is the classic Meltice detection and it is in GD32.EXE ...so just hide sice and all will be ok.
Now we can run FfsdLoader.exe to enable FFsd filter and then we can load sice. Obviously until we don’t
enable the IRP_MJ READ bpx we can see nothing but our driver is working hard....©.

To enable the bpx, just set the option in the FfsdLoader interface, you have to keep in mind that when the int 3
in our hooking routine is enabled softice breaks at any read operation directed to the windows file system
driver...originated in user mode or kernel mode...and in any thread!. This mean that we need to know exactly
ifan IRP_MJ READ is generated as a consequence of an open/read request on our InTether protected file.
To do so we can code just few lines of code instead of using notepad to open for ex. our FooB.txt file...in this
way we use int 3 to isolate any api call used on the file protected...and step over any IRP. MJ READ
generated out of these calls...

push 00000000

push FILE ATTRIBUTE NORMAL
push OPEN_EXISTING
push 00000000

push 00000000

push ~ GENERIC READ
push offset FooBName
int 3

call CreateFileA

mov FileHnd,eax

push 00000000

push eax

int 3

call GetFileSize

push 00000000

push offset ByteReceived
push eax

push offset DataBuffer
push dword ptr FileHnd
int 3

call ReadFile

int 3

push dword ptr FileHnd
call CloseHandle

With the code above we can set a Bpint 3 in sice and we can enable the IRP. MJ READ bpx in FfsdLoader.
We can simple step over (ctrl-d) in sice everytime our FFsd filter break with read operation trapped...until we
meet the first int 3 before the createfileA api that open the text file protected....we skip the int 3...and we step
over the api function...and straight away FFsd traps the first (of a long series) read requests...but from now we

are sure that our FFsd filter breaks on a InTether requests...we are in! ...turn on the stereo...get some
drink...send the wife/girl in bed (make sure she is alone ©) ...the tactical phase is complete, time for some on-
field action!

Before to dig in sice just a note to refresh the path of any IRP_ MJ READ that our FFsd filter trap:

User open/read req. on FooB.txt

User mode

v Kernel mode

FFsd file system filter

v

InTether dgfs file system filter

v

Win2K Ntfs file system driver

File system filters chain

When the IRP._MJ READ pass through our FFsd filter we can retrieve the file name on which the read request
is directed (with all parameters) and when we see FooB.txt filename we can follow the IRP inside the InTether
file system filter and see on which file it redirects the read request and find where it stores our text file FooB.
Lets go now...

During the CreateFileA api on FooB.txt file our FFsd filter report a series of suspected IRP. MJ READ
requests sent to InTether Gdfsd.sys file system driver (well...directed to windows file system ©):

c:\winnt\system32\dgperm.db Offset : 38h Length : 668h bytes
c:\winnt\system32\dgperm.db Offset: : 6AOh Length : 668h bytes
c:\winnt\system32\dgperm.db Offset : DO8h Length : 668h bytes
c:\winnt\system32\dgperm.db Offset : DO8h Length : 668h bytes
c:\winnt\system32\dgperm.db Offset : 38h Length : 668h bytes
c:\winnt\system32\dgperm.db Offset: : 6AOh Length : 668h bytes
c:\winnt\system32\dgperm.db Offset : DO8h Length : 668h bytes
c:\winnt\system32\dgperm.db Offset : DO8h Length : 668h bytes
c:\winnt\system32\dg32.exe

c:\winnt\system32\dgimages

c:\winnt\system32\dg32.exe

c:\winnt\system32\dg32.exe

c:\winnt\system32\win32k.sys

then the nagscreen tell us how many mins we still have to see the text file, then after clicking on the open
button in the dialog:

... windows reads some own files...but after again....

c:\winnt\system32\dgperm.db Offset : 38h Length : 668h bytes
c:\winnt\system32\dgperm.db Offset: : 6AOh Length : 668h bytes
c:\winnt\system32\dgperm.db Offset : DO8h Length : 668h bytes
c:\winnt\system32\dgperm.db Offset : DO8h Length : 668h bytes
c:\winnt\system32\dgperm.db Offset : 38h Length : 668h bytes
c:\winnt\system32\dgperm.db Offset: : 6AOh Length : 668h bytes
c:\winnt\system32\dgperm.db Offset : DO8h Length : 668h bytes
c:\winnt\system32\dgperm.db Offset : DO8h Length : 668h bytes

c:\winnt\system32\vault.gdv Offset : 20h Length : 118h bytes
c:\winnt\system32\vault.gdv Offset : 138h Length : 118h bytes
c:\winnt\system32\vault.gdv Offset : 138h Length : 118h bytes

c:\winnt\system32\vault.gdv Offset : 20h Length : 118h bytes

c:\winnt\system32\vault.gdv Offset : 138h Length : 118h bytes
c:\winnt\system32\vault.gdv Offset : 138h Length : 118h bytes

and then createfile returns and we break at int 3 after the api function.

And this is a good news for us...dgperm.db and vault.dgv are for sure InTether files ...and this tell us that even
if dgfs is lower than our FFsd filter in the file system filters chain, it‘s not able to hide the access to its own
files. How this happen is explained in the scheme below:

User open/read req. on FooB.txt

User mode

¢ Kernel mode

v
FFsd file system filter

{ ZwReadFile }

4 v

dgxxx ¢ InTether dgfs file system filter

v

Win2K Ntfs file system driver

File system filters chain

So basically the InTether file system filter (dgfs) call an external driver (dgxxx) which call ntoskrnl functions
(ZwReadFile etc) to access to its own files. But the ntoskrnl pass the I/O operation to the top of the file system
filters chain...and our FFsd filter traps all read requests on dgperm.db and vault.dgv.

Ok back to our code...we are stopped on the int 3 after the createfilea api function, now we can skip over and
execute the getfilesize api to have the size of our FooB text file.

The GetFileSize api is executed without any break by FFsd ...so no IRP. MJ READ requests...Someone can
say that this is normal because the GetFileSize api generates an IRP. MJ QUERY INFORMATION and not
IRP_MIJ READ...and this is right, but wrong here...because I want to remember that every protected files are
saved by InTether within one, and unique file...so using an IRP. MJ QUERY_ INFORMATION on this
unique file gives the total size of the file.

So this little detail gives us a precious clue...the size of a protected file is read from dgperm.db or vault.dgv
...and probably there are others delicious info there ©.

Ok go on, we skip the int 3 and we arrive at ReadFile api...we execute the function and FFsd breaks for these
read requests:

c:\winnt\system32\vault.gdv Offset : 20h Length : 118h bytes
c:\winnt\system32\vault.gdv Offset : 138h Length : 118h bytes
c:\winnt\system32\vault.gdv Offset : 138h Length : 118h bytes
c:\winnt\system32\vault.gdv Offset : 40BO0Oh Length : 20h bytes

and then breaks the int 3 after the ReadFile api ...so if we check the buffer we have the FooB text.
Cool...now we have enough clues to understand what InTether does...lets put all these clues together:

During the open request 2 files have been accessed : “dgperm.db” and “dgvault.dgv”.
dgperm.db has been read in block of 668h bytes and it has an header of 38h bytes.
vault.dgv has been read in block of 118h bytes and it has an header of 20h bytes.

Both are hidden file.

Both they have been read twice.

One of these 2 files store the size of each files protected.

During the ReadFile api no one IRP_MJ READ is generated for a “FooB.txt” fileobject.

Nk wb=

8. wvault.dgv seems store the protected file. We know that the last read operation (during the
ReadFile api) read 20h bytes (32d) from vault.dgv...this is the size of our FooB.txt and after that
there are no more read requests in the system until we return from the ReadFile api.

Ok what we want to do is make a copy of our FooB.txt file, so now in this part 1 of this tutorial we concentrate
to analyse in details what happen inside the read operation. Basically to extract a protected file we need to
know where it’s stored (even if we know now that vault.dgv is the container), the offset where start each file
inside the container and (if they are encrypted) ...how decrypt them.

Just a note the virtual addresses of the code that follow are just for better reading jmps ..but don’t trust on it
they are surely different on your pc, except for the ntoskrnl code which is mapped from the VA 80000000h on
all win2k system ©.

So we can restart the little code to open and read FooB file again ...this time, during the ReadFile api function,
we start to step the code after the first trapped IRP. MJ READ.

We have seen that the first read request got it in ReadFile is :
c:\winnt\system32\vault.gdv Offset : 20h Length : 118h bytes

so sice break inside our FFsd here :

FFsd.sys

FO9AC419 mov ebx, [ebp-0C] ; ebx = pointer to filename buffer
mov eax, [ebptl4] ; eax = offset to read
mov ecx, [ebp+lC] ; ecx = length to read (bytes)
mov edi, [ebp+08] ; edi = buffer that receives data
int 3
push esi ; € we are here
call [ntoskrnl!ExFreePool]
pop edi
pop esi
mov al,01
pop ebx
leave
ret

We are in our code (FfsdGetPathName) and we have trapped the IRP. MJ READ on vault.dgv...and we have
all parameters in the registers. This request will read 118h bytes at the offset 20h (skip the header) with the
buffer pointer in EDI...we just keep on eye on this buffer (D EDI) to see what InTether read .

Ok we can step on and return from our FfsdGetPathName...and we land here:

. FFsd.sys

FO9AC4 64 push 09
mov edx,ebx
pop ecx

rep movsd

mov eax, [ebx+60]

and dword ptr [eax-04],00

and Dbyte ptr [eax-21]1,00

sub eax,24

mov dword ptr [eax+1C],F09AC280
mov eax, [ebp+0C]

mov ecx, [eax+04]

call [ntoskrnl!IofCallDriver]

pop edi
pop esi
pop ebp
ret 0008

We are inside our FfsdHookRoutine, the code above copy the irp stacklocation in the next irp stack location for
the below (our driver) driver, then the IRP. MJ READ is passed down to the next filter driver...InTether
dgfs.sys. We don’t follow the IRP down...we are interested only to have the data read and to know who has
read that. So we step over the IofCallDriver ...if we look at the buffer in sice we see the 118h bytes read.

We can return from our Hook routine to the kernel...here :

ntoskrnl.exe

8041F547 call [eax*4+ecx+38]
pop edi ; € we land here
pop esi
ret

The above code is the end of the IofCallDriver (which in reality is the [oBuildSynchronousFsdRequest).

We step over and we land for a while in the dgfs.sys filter just to see that it has used IofCallDriver to send the
IRP down to the file system...then it returns again in the above code in the kernel...and then we return after
the ‘main’ IofCallDrive used by the kernel to send to our FFsd filter this IRP. MJ READ...here:

804BAS5SE3 call ntoskrnl!IofCallDriver
cmp byte ptr [ebp+14],00 ; € we land here
mov [ebp+OC], eax
jz 804BA61B
cmp eax, 00000103
jz 804BA61B
mov cl,1

Now we step the lines above until the ret instruction and after that we land to the end of NtReadFile ntoskrnl
function ...we exit from this function with the first ret that we meet and we land inside the
ExReleaseResourceForThread kernel function...here:

80461691 mov esp,ebp
mov ecx, [FFDFFF124]
mov edx, [ebp+3C]
mov [ecx+00000128],edx
cli
test dword ptr [ebp+70],00020000

pop edx

add esp,08

pop ecx

sti

sysexit

iretd ; exit from the int 2Eh (Alh NtReadFile)

With the iretd instruction we return from the int 2Eh used to call the NtReadFile (A1h) and we land after the
ZwReadFile (ZwReadFile = NtReadFile = A1h) call, inside the InTether code that has called this kernel
function ...dgcrypt.sys....helhe! got it!.

So now you can follow any IRP. MJ READ that our FFsd traps, but give a look at the dgcrypt code because 1
have the feeling that the buffer will be decrypted soon © ...

. Dgcrypt.sys
BC64F3A1 call [ntoskrnl!ZwReadFile]
jge BCG64F3AF
XOr eax,eax
Jmp BC64F3D9

BC64F3AF cmp [ebp-10],edi
jnz BC64F3AB
cmp [BC658964],esi
lea eax, [ebp-04]

push eax

push esi

push edi ; size buffer to decrypt
push dword ptr [ebp+0C] ; pointer buffer to decrypt

jz BC64F3CC
push BC6599E0

Jjmp BC64F3D1
push BC658980
BC64F3CC call BC64F2E4 ; decrypt the buffer
push 01
pop eax
mov ecx, [ebp+18]
mov edx, [ebp-10]

pop edi

pop esi

mov [ecx],edx
leave

ret 0014

At the BC64F3CC we have the call that decrypt the data just read from the vault.dgv. We can just skip over the
call and look at the buffer decrypted...but before or after we need to take care of reversing this decryption algo
if we want to code a program that make copy of InTether protected files...so lets give it a look now :

Dgcrypt.sys
BC64F2E4 push ebp

mov ebp,esp

push esi

mov esi, [ebpt+18]

push edi

mov edi,000007FF

mov eax, [esi] ; eax = offset used to read in vault.dgv

xor edx,edx

add eax, [ebp+l1l4]

and eax,edi ; Keep the 11 lowest bits (max.7FFh)
; will be used like index in the buffer
; key to take a byte.

cmp [ebpt+10],edx ; 1s the size to decrypt 0 ?

jbe BC54F319 ; no! go on

push ebx

BC64F300 mov ecx, [ebp+0C] ; ecx = pointer in buffer to decrypt

mov ebx, [ebpt+08] ; ebx = point to the buffer for the
; decryption key.

add ecx,edx ; ecx = point byte to decrypt

mov bl, [ebx+teax] ; bl = byte key from the key buffer

and eax,edi ; eax = make sure that the new index is 11
; bits (max.7FFh)

xor [ecx],bl ; decrypt one byte in buffer

inc eax ; increment index for the next pass

inc dword ptr [esi] ; increment index for the next pass in
; memory too.

inc edx ; increment index in buffer to decrypt

cmp edx, [ebp+10] ; decrypted all bytes ??

Jb BC64F300 ; not yet!...loop for the next bytes.

pop ebx

pop edi

pop esi

pop ebp

ret 0014

It’s a simple decryption algo, It use a xor operation on each byte and use a key buffer of 7FFh bytes.

The offset used to read in the vault.dgv file is used like the starting index in the key buffer, so for example...in
the first read operation it reads a 118h bytes block, with the offset 20h (skip header)...so the first byte of the
read data is xored with the value at KeyBuffer+20h ...and then the ‘offset-index’ is incremented.

The Key buffer is stored in the data section of dgcrypt.sys...so ready to be read by us later ©.

Ok now we can look at the decrypted buffer :

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000AO0
000000BO
000000cCO
000000DO
000000EO
000000FO
00000100
00000110

4447
6F6F
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1600

5F46
412E
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

494cC
7478
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0100

4500
7400
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Just a marker.

Unkwon for now. (explained later)

Unkwon for now (explained later)

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

The path-+filename of our first protected file.

Seems the size of the protected file. 16h = 22d.

633A
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

5C46 DG FILE..... c:
0000 ocOA.txXt.veee...

Ok basically each 118h bytes block describes an InTether protected file active on our system...but lets go to
see what the code search /check in these bytes...After that the 118h bytes have been decrypted we follow the
code and we arrive inside another InTether driver...dgvault :

BC40010E

push
mov
mov
push
test
mov
jz
mov
cmp
ja
mov
test
jz
imul
lea
add
push
push
push
mov
push
push
call
test
jnz
and
XOor
pop

ebp

ebp, esp

eax, [ebp+08]
esi

eax,eax

ecx, [eax+04]
BC400152
eax, [ebp+0C]
eax, 63
BC400152
esi, [xxxxx]
esi,esi
BC400152
eax,eax, 00000118
eax, [ebp+08]
eax, 20

edx
00000118
eax

eax, [XXXxXXX]
esi

ecx

[eax+0C]
eax,eax
BC400159
[esi+00000114],eax
eax,eax

esi

’

num of 118h bytes blocks checked

we can open max. 63h protected files (?)

calculate offset in vault.dgv to read

add the header size

call dgcrypt to read/decrypt 118h bytes
€ we are here after the decryption

pop ebp
ret 000C

The routine above prepare the offset within vault.dgv ,the size (118h) and the buffer to pass down to the
dgcrypt, which (how we have seen) read and decrypt the 118h byte block....so we return after the call
[eax+0C] and we can return again in the main routine to see what it’ll check in the buffer :

Dgvault.sys
BC4001E6 call BC40010E ; call the above routine to read
; vault.dgv
test eax,eax
jz BC400244
mov esi,ntoskrnl!RtlInitString
push edi
call BC400062 ; check if the first 8 bytes of the
; 118h block are ‘DG_FILE’.
test eax,eax ; eax = 1 = yes, go on
jz BC400244
lea eax, [edit+0C] ; eax = path-name in the 118h
; bytes block
push eax
lea eax, [ebpt08]
push eax
call esi ; Init buffer with path-name in the
; 118h bytes block.
push dword ptr [ebp+0C]
lea eax, [ebp-10]
push eax
call esi ; Init buffer with path-name of the
; file that we want read in usermode
; (..\FooB.txt).
lea eax, [ebp-08]
push 01
push eax
lea eax, [ebp-10]
push eax
call ntoskrln!RtlEqualString ; compare both string
test eax,eax ; al = 1 = equal
Jjz BC400230
push edi
call BC400040 ; It’s the right block (same path-
; name) check dword at the offset
; 114h in the block.
test eax,eax ; If dword = 1 the file is ok
jz BC400256 ; and we jump out of the loop
BC400230 inc ebx ; 1f 2 the file is bad (expired?)
cmp ebx, 64 ; so prepare to read another block
Jjae BC400244
push edi
push ebx
push dword ptr [ebp+08]
call BC40010E ; call the above routine to read
; vault.dgv
test eax,eax
jnz BC4001F5
BC400244 or esi,-1
BC400247 push edi
call BC4001F5 ; free strings buffers
mov eax,esi
pop esi
pop esi
pop ebx
leave
ret 0008
BC400256 mov esi,ebx
Jmp BC400247

Now we know that dgvault scans each 118h bytes block to find the path-filename of the file that we want to
read...when it has found it , the last dword of the 118h bytes block is compared with 1 (good file) if it’s 2
(probably mean expired file) and the block is discarded. Then the right block is read a second time...this loop
of reading operations is performed twice...after that, the execution return to the code that has started this
reading loop....dgfs.sys.

So now we can make a scheme about the InTether kernel modules relationship :

User open/read req. on FooB.txt

User mode

Kernel mode
ZwReadFile

Our FFsd file system filter

1 I

Dgcrypt.sys File system filters chai
— InTether dgfs file system filter LSRR
Dgvault.sys <_J i

Win2K Ntfs file system driver

Ok..when dgvault has found the right 118h bytes block (FooB.txt, the second for us)...it simple releases the
Mutex (KeReleaseMutex) that protect the vault.dgv accessing and then close the file.

I suggest at the InTether coders to check the code that manage all their syncronization objects because I
have the feeling that it’s quite dodgy...and may be buggy...the process ID check should be enough to
leave go down a write operation that come from a process which has not open any InTether protected
file...but unfortunately sometime it fails ®. I don’t know exactly why but I think worth a check there.

At this point it returns in dgfs, which just check (eax ©) if dgvault has found the right block ...which mean
that the file protected is inside vault.dgv and is possible read it.
Here the dgfs code...

Dgfs.sys
BC3A1433 call [eax+0C] ; call dgvault to read each 118h
; bytes block until it finds the
; right one.
test eax,eax ; eax = 1 found
mov [ebp-08],eax
jnz BC3A1445 ; found it, jump and go on
mov dword ptr [esi],C0000001
Jmp BC3A147
BC3A1445 lea ecx, [ebp-04]
push ecx
push dword ptr [ebp+10] ; Irp.paramaters.Offset (of our ReadFile)
push dword ptr [ebp+0C] ; Irp.parameters.Length (of our ReadFile)
push dword ptr [ebp+14] ; Irp.UserBuffer (of our ReadFile)
push eax
mov eax, [BC3CEA2C]
call [eax+1C] ; call dgvault to read the file FooB.txt

; inside vault.dgv
cmp dword ptr [ebp+04],00
mov edi,eax
jz BC3A146A
mov dword ptr [esi],C0000001
lea eax, [ebp-08]

push eax
mov eax, [BC3CEA2C]
call [eax+14]

call dgvault last time to free its
allocated mem

’

’

In the code above dgfs calls dgvault for the last time (call [eax+1C]) to read FooB.txt and satisfy our

ReadFile api request. Finally now we can know where
each file within it.

or in which way it retrieve the offset inside vault.dg for

When we have this information we have all necessary to code our own backup utility for InTether protected

file...but give it the last look inside dgvault.sys code:

Dgvault.sys

BC4276BE push dword ptr [BC440020]
call BC42886A

BC4276ED mov eax, [ebp+10]
mov ebx, [eax+14]
mov ecx, [esi+00000118]
lea edx, [ebx+eax]
cmp edx,ecx
jbe BC427719
cmp eax, ecx
Jjbe BC427708
and dword ptr [ebp-08],00
sub ecx,eax
cmp dword ptr [ebp-08],00
mov [ebp+l14],ecx
jz BC427864
mov ebx,ecx

BC427719 mov ecx, [esi+00000114]
test eax,eax
mov [ebp-04],ecx
jz BC427771

BC427771 cmp dword ptr [ebp-08],00
jz BC427864
mov eax, [ebp-14]
lea edx, [ebpt+eax+FFFFF000]
test edx,edx
jle BC4277A1

BC4277A1 mov eax, [eax-14]
mov edi,1000h
test eax,eax
jz BC4277B7

BC4277B7 cmp dword ptr [eax-10],01
mov esi,edi
Jjae BC4277C1
mov esi,ebx
shl ecx,0C
lea edx, [ebpt+08]
push edx
lea eax, [eax+ecx+0003FB0O0]
push esi
push eax
push dword ptr [ebp+0C]
mov eax, [BC440058]
push dword ptr [eax+04]

open vault.gdv (ZwCreateFile)

Irp.paramaters.Offset (of our ReadFile)
Irp.parameters.Length (of our ReadFile)
size of the file stored in the 118h
bytes block

edx offset + Length to read

if below or equal at the file size jmp

A new value for us for FooB’s block is
0000001 and it is the number of 1000h
blocks (pages) from the point where
start the files protected in vault.dgv
to the start of our FooB.txt.

ecx

num pages * page size

’

eax 3FBOO (offset in vault.dgv where
; start the files protected) + ecx
; offset start FooB.txt

; =

mov eax, [BC44001C]

call [eax+0C] ; call dgcrypt to read the bytes which are
; our FooB.txt and then decrypt them with
; the same algo see before.

Just a little explanation about the algo above...it basically calculate the offset within the file vault.dgv where is
stored the requested protected file (our FooB.txt).

The ‘key’ point is the dword value stored in each 118h bytes block at the offset 10C (before the dword of the
size if you look at the block some pages above). In the code this value is retrieved with an index of 114h , but
this is not more the original 118h bytes block buffer read by dgcrypt...but it has been copied in a second buffer
with 2 dword (values) in more at the start by dgvault...during the last block reading....so no worry 114h index
point at the value 10C in the 118h byte block. But what is this value ?? ...InTether store the protected files in
chunks of 1000h bytes (I have called these chunks ‘pages’ don’t confuse with page of mamory ©) ... starting
from a fixed point (offset) which is 0003FB00. So in our vault.dgv we have 2 file stored, FooA.txt (22bytes
size) and FooB.txt (32bytes size)...and this is the scheme of our dgvault file :

0
Header
20
Ist 118h bytes block
c:\FooA.txt
138
2nd 118h bytes block
c:\FooB.txt
250
3FB00
FooA . txt
22 bytes (3FB00 to 3FB16)
40B00
FooB.txt
32 bytes (40B00 to 40B20)
41RB00

Even if FooA.txt is only 22 bytes it uses an entire 1000h bytes chunk (page), same for FooB.txt, which is 32
bytes. Each 118h bytes block has a dword value at the offset 10Ch which is the number of ‘pages’ from the
start of the files (3FB00) to the start of the file that the block describe...basically a kind of delta offset but
expressed in number of ‘pages’, from a fixed point.

With this value dgvault calculate the starting offset of our file.

...cool...now we have all information to code a backup utilty...

We know where InTether stores the active protected files on our system.

We know where InTether stores information for each protected files.

We know where to find a specific file inside vault.dgv

We know the decryption algo (and where is the decryption key in memory) to decrypt blocks and
files.

Included there is my InTetbck.exe and InTetKey.sys , to create a copy of an active InTether protected file
(...protected with the same options used for our 2 examples FooA.txt and FooB.txt).

The code is very simple and well commented...just a note on the InTetKey code...this is a kernel mode code to
read the decryption key from dgcrypt.sys data section in memory. I have chosen to use a ‘runtime’” dump of the
key because the dgcrypt data section is full of key buffers used for others decryption process that we see in the
next tutorial.

To read the key buffer we can simple use the ‘bad documented’ or ‘documented in the classic M$hit style’
ntoskrl function ZwQuerySystemInformation with SystemModuleInformation (0x0000000Bh) as
system_class_information.

With this kernel function we can retrieve the System Module Information (see InTetKey.h) for each system
module loaded in the system address space.

So we can know where dgcrypt.sys has been mapped in memory and then read its data section.

Simple but full working.

A final note on InTetBck.exe...it require in the same directory a copy of the file vault.dgv. Which is (I
remember) in the \winnt\system32 directory and it’s an hidden and locked (obviously ©) file.

...So why don’t use the NTFS.exe utility coded at the start of this tutorial, to make a copy of that. ©

Nothing to see in more...just remember that in this part 1, we have analysed the read operation on a InTether
protected file by InTether protection system...with the purpose to understand how it works inside the Win2k
‘panties’ and to perform a backup copy of our files.

In the part 2 we’ll see the ‘open’ operation on an InTether protected files...and the others dgxxxxx.sys drivers
and their relationship.

Stop now...I hope to have kept all in a simple and readable form for everybody ...the most funny part of a
reversing session is building a ‘strategic’ way to operate...like in a strategic/tactic game, often this takes more
time than just step in the code until you see a ‘jmp oep’ © ...but worth more too.

Don’t limit yourself to crack a protection....reverse it ...Be a curious reverser...crack a protection is not
the final goal for a reverser, but the excuse to start ...then you can free your brain.

A BIG THANKS TO :
InTether developing group, for the funny nights that I have spent on their protection.
It’s been the first No-boring reversing session after a long period. All my respect.

...see ya in the part 2.

MaV3RiCk

maverickluke@hotmail.com

mailto:maverickluke@hotmail.com

