InTether protection system...reversing kernel code, reversing
data, coding reversing tools, ...basically it’s the perfect reversing
training field!

Part 2

...now that we know how InTether protection works, we can give a look at .ith files that InTether
packager creates...this could be a good file reversing exercise.
As always...if you are looking only for a way to crack InTether protection...you are on the wrong way.
This is a reversing tutorial!

*** The OS is Windows 2000 professional with NTFS file system ***
*** And please forget my horrible english ***

Ok here we are again with InTether protection. In the part 1 we have seen how this protection works so I
don’t repeat nothing here, just make sure to have read the previous tutorial before to start with this.

In this tutorial we concentrate our attention on .ith files. An .ith file is the resulting protected file generated
by InTether Packager. It stores the original data file and all settings and it’s not a win32 PE image but a
‘static’ data file.

What we want to do is quite simple: we want to extract the original file from its .ith file (the protected
version of the original file). With this purpose we can give a look at the .ith file format and reverse a bit in
more of the InTether protection system.

But lets start!

First thing we have to create a simple text file to protected ...so just put this text in a txt file called Foo.txt :

Hello World!

The file is 12 bytes. Now we can protect it with InTether Packager. We use only the classic option “File
may be read for...” and we set a 10 mins time.

Ok now we have our Foo.ith file and we can give it a look in a hex editor.

Keep in mind that this is my version of Foo.ith, which is encrypted with a encryption key that probably

comes from a random seed ...so Foo.ith may be different from your in the ‘first look’ (but not in the real
contents ©).

00000000 2175 3737 3C8E 2E10 4506 51D5 11FE E1BA 2D88 D4FO0 !u77<...E.Q..... -...

00000014 EOC6 82AE F297 2462 A683 8A4E 519A BFDD CB4A CC3B $b...NQ....J.;
00000028 62E5 22E1 OE4E 79B4 FO9EA A825 7A58 49CA DC31 3493 b."..Ny....%zXI..1l4.
0000003C F6D6 6A37 5BF2 2E19 CAE7 6A5B B38A 1A83 7E08 CA80 ..j7[..... i I
00000050 1579 EA80 EFO00 CBB7 5052 15E9 75E9 DDD6 5978 532B .y...... PR..u...¥YxS+
00000064 2E4C 2AF5 7D01 7BBD 0OBOA 27B0 DIC1l F9DF 663C 10AC .L*.}.{...'..... f<..
00000078 9EOC 3028 OA5B D1A7 4AAQ0 80D1 808B CB29 282B 00D8 ..O0(.[..J......) (+..
0000008C 3382 F903 AFE8 0537 57EC C7E6 B081 369D 47EC F395 3...... TW. ..., 6.G...
000000A0 2E7E 8672 2869 E3CB B9E6 4AAA B6CO 9397 581A 0335 .~.r(i....J..... X..5
000000B4 05D1 21D4 6B5C 4Al5 ACE3 93C5 739C 701E OEED 7E3B ..!.k\J..... S.P...~;
000000C8 EB14 0070 7A6B DC83 1EE6 36DD 1C8F 1667 9891 AC83 ...pzk....6....9....
000000DC FESF 4193 AC43 64D4 04D4 714A A78B FAAT 2579 5A4A . A..Cd...qJ....%yZJ
000000F0 8A3D 632D 6EC1 361C 1515 9E02 1A0A 38CO 7BFA 70A3 .=c-n.6....... 8.{.p.
00000104 7FF1 9437 5204 D1E7 1D53 1B67 B48C 332B 744B 4ECF ...7R....S.g..3+tKN.
00000118 2175 3737 3C8E 2E10 4506 51D5 11FE EI1BA A902 2C73 !u77<...E.Q....... ;S
0000012C AA72 946F ODFD B303 ABAO F1A7 726C 6421 216D 3265 .r.0o........ rld!!m2e
00000140 2027 9932 4506 51D5 11FE E1BA 2AEA CC4D 1B36 E5F4 '.2E.Q..... *..M.6..
00000154 2A1D 11D1 A979 6F5D 32BF AFE2 5BBB FD90 2175 3737 *....yol2...[...'u77

00000168 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
0000017C 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!'u77<...'u77

00000190 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
000001A4 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!u77<...'u77
000001B8 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
000001CC 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!'u77<...'u77
000001EO0 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!'u77<...
000001F4 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!'u77<...'u77
00000208 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
0000021C 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!'u77<...'u77
00000230 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
00000244 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!'u77<...'u77

00000258 3C8E 2E10 0D6l1 08E1l 88A5 931B 2175 3737 3C8E 2E10 <....a......!u77<...
0000026C 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 0930 73FB !u77<...!u77<....0s.
00000280 BBD2 4585 6DFF E113 7EBA 6EOB 2175 3737 3C8E 2E10 ..E.m...~.n.!u77<...

00000294 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!'u77<...'u77
000002A8 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
000002BC 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!u77<...'u77
000002D0 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
000002E4 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!'u77<...'u77
000002F8 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
0000030C 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!'u77<...'u77
00000320 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!'u77<...
00000334 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!'u77<...'u77
00000348 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
0000035C 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!'u77<...'u77
00000370 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
00000384 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!u77<...'u77
00000398 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
000003AC 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!u77<...'u77
000003C0O 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
000003D4 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!u77<...'u77
000003E8 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
000003FC 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!u77<...'u77
00000410 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
00000424 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!u77<...'u77
00000438 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...
0000044C 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!u77<...'u77
00000460 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!'u77<...
00000474 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 !'u77<...!u77<...'u77
00000488 3C8E 2E10 2175 3737 3C8E 2E10 2175 3737 3C8E 2E10 <...!u77<...!u77<...

0000049C 2175 3737 3C8E 2E10 0421 6D32 6520 2799 322D 6B80 !u77<....!m2e '.2-k.
000004B0 FD77 DD28 94ED 5C38 68B1 0OD5D 7A21 7537 373C 8E2E .w. (..\8h..]lz!u77<..
000004C4 1021 7537 373C 8EZ2E 10EO 0384 8898 9661 E345 1C43 .!u77<......... a.E.C
000004D8 25F4 9F16 8421 6D32 6520 2799 3245 0651 D511 FEEl %....!m2e '.2E.Q....

000004EC BA62 9D91 4472 B72A 8778 0000 0000 0000 0000 0000 .b..Dr.*.X..........
00000500 0004 0000 0O0C1 0800 0000 0000 0087 8080 80D4 C3B2 . iviviineneenennnnn
00000514 Al

Ok it is 514h bytes (1301d bytes) and our Foo.txt (12d bytes) is inside this ‘spaghetti’ bytes © .
But reversing is, first of all, investigation...
So lets analyse what these bag of bytes can tell us...

e The file is encrypted. (great intuition MaV ! © ...but try to justify this in few words ©).

e A sequence of bytes is repeated several times : 3C8E 2E10 2175 3737
This means that we have a simple XOR encryption and the data file has a lot of DWORD of the
same value, may be 0.

e At the offset 4F7h we have the only 00 bytes (in red) of all file. This tell us that probably these last
bytes are NOT encrypted.

e We know that the file is encrypted (or at least our Foo.txt) but this Foo.ith file can be read by any
InTether Reader on any machine. This tell us that the decryption key (or a seed to generate it)
should be stored inside this file. Or, in the best situation for us (and the worst for who use this
protection) the decryption key is hardcoded inside the InTether Reader. I suggest to avoid to
undervaluate the authors of a program that we are reversing ALWAYS!. So we forget the last
situation and we can say that the encryption key or a seed to generate it must be stored inside the
file, and this value(s) is not inside a piece of the file encrypted!...may be is in the last bytes ©.

e The last bytes (not encrypted) could be part of a header (or better say a footer). InTether Reader
need to be able to recognize a valid .ith file, other than from its extension.

So from these clues we can anticipate the first step that the Reader should perform: reading Foo.ith with an
offset beetwen 4F7h and the EOF (end of file).

But now it’s time to collect some ‘on-field’ clues, so we need our FFsd filter (see the part 1) to monitor the
accessing to the file Foo.ith.

We run FFsd and then we run sice (don’t forget to hide it from meltice trick). Now we can enable our
IRP_MJ READ bpx and we start to collect info. Everytime our int 3 in FFsd break, I remember that, we
have the IRP_MJ READ parameters in these registers:

EAX = file offset inside the file where fsd have to start reading.
EBX = pointer at the (unicode) file name of to read from.

ECX = length (bytes) to read from the file.

EDI = buffer for bytes read from the file.

For now we just take note of all access at Foo.ith without take care of the bytes read. We write down only
Offset, Size and the caller of read operation. It takes about 20 mins but it’s important because I show you
how a reversing session is first of all analyse and investigation of all clues and not only stepping code in
softice...often we can have more information studying a log or a static series of bytes.

Anyway these are all the accesses (read) at Foo.ith:

Num File Offset (hex) Size (hex) Caller
1 Foo.ith 511 4 InTetherReader.exe
2 Foo.ith 4F9 18 InTetherReader.exe
3 Foo.ith 0 2 Shell32.d1l1
4 Foo.ith 511 4 Dg32.exe
5 Foo.ith 4F9 18 Dg32.exe
6 Foo.ith 4F5 4 Dg32.exe
7 Foo.ith 4F9 18 Dg32.exe
8 Foo.ith 4DD 18 Dg32.exe
9 Foo.ith 4A5 18 Dg32.exe
10 Foo.ith 474 1 Dg32.exe
11 Foo.ith 4F9 18 Dg32.exe
12 Foo.ith 4DD 18 Dg32.exe
13 Foo.ith 4175 18 Dg32.exe
14 Foo.ith 13C 18 Dg32.exe
15 Foo.ith 118 18 Dg32.exe
16 Foo.ith 0 18 Dg32.exe
17 Foo.ith 4F9 18 Dg32.exe
18 Foo.ith 4DD 18 Dg32.exe
19 Foo.ith 4A5 18 Dg32.exe
20 Foo.ith 154 350 Dg32.exe
21 Foo.ith 4F9 18 Dg32.exe
22 Foo.ith 4DD 18 Dg32.exe
23 Foo.ith 4A5 18 Dg32.exe
24 Foo.ith 13C 18 Dg32.exe
25 Foo.ith 118 18 Dg32.exe
26 Foo.ith 18 100 Dg32.exe
27 Foo.ith 4F9 18 Dg32.exe
28 Foo.ith 4DD 18 Dg32.exe
29 Foo.ith 4BD 10 Dg32.exe
30 Foo.ith 4CD 10 Dg32.exe

...Then dgpdb.sys access to dgperm.db through dgerypt.sys...after that, dg32.exe goes on with Foo.ith
reading:

Num File Offset Size Caller

31 Foo.ith 4F9 18 Dg32.exe
32 Foo.ith 4DD 18 Dg32.exe
33 Foo.ith 4A5 18 Dg32.exe
34 Foo.ith 13C 18 Dg32.exe
35 Foo.ith 118 18 Dg32.exe
36 Foo.ith 0 18 Dg32.exe
37 Foo.ith 4F9 18 Dg32.exe
38 Foo.ith 4DD 18 Dg32.exe
39 Foo.ith 4A5 18 Dg32.exe
40 Foo.ith 13C 18 Dg32.exe
41 Foo.ith 118 18 Dg32.exe
42 Foo.ith 0 18 Dg32.exe

...At this point we have the main nagscreen, it show the characteristic of our protected file and it permits us
to choose where to save the file. We leave the default path and we click on “save&close”...and the
accessing at Foo.ith goes on....

Num File Offset Size Caller
43 Foo.ith 4F9 18 Dg32.exe
44 Foo.ith 4DD 18 Dg32.exe
45 Foo.ith 475 18 Dg32.exe
46 Foo.ith 13C 18 Dg32.exe
47 Foo.ith 4F9 18 Dg32.exe
48 Foo.ith 4DD 18 Dg32.exe
49 Foo.ith 475 18 Dg32.exe
50 Foo.ith 13C 18 Dg32.exe
51 Foo.ith 118 18 Dg32.exe
52 Foo.ith 0 18 Dg32.exe
53 Foo.ith 511 4 Dgfs.sys
54 Foo.ith 4F9 18 Dgfs.sys
55 Foo.ith 4F5 4 Dgfs.sys
56 Foo.ith 4DD 18 Dgfs.sys
57 Foo.ith 4CD 10 Dgfs.sys
58 Foo.ith 475 18 Dgfs.sys
59 Foo.ith 474 1 Dgfs.sys
60 Foo.ith 154 350 Dgfs.sys
6l Foo.ith 13C 18 Dgfs.sys

...at this point is the turn of vault.dgv. Dgvault.sys access it through dgcrypt.sys...then...

Num File Offset NIVAS Caller
62 Foo.ith 130 C Dgfs.sys
63 Foo.ith 118 18 Dgfs.sys
64 Foo.ith 0 18 Dgfs.sys

...and then the messagebox tells us that our Foo.txt has been saved. Cool!! ©
Ok now we can analyse all this log in deep and this is what we have:

e (Num=1) How we have predicted...the first read operation on Foo.ith is performed at the offset
511h and it read the last 4 bytes (which are probably a marker that identify an ith file and a
version).

e (Num=1/2) InTetherReader.exe performs only 2 read operation (the first two). This tells us that
the reader is just a parent application for an hooker, but it doesn’t have a major role during an
extraction/activation of our protected file.

e (Num=3) Windows shakes the ass in anytime...shell32.dll checks the first 2 bytes to see if the file
is a PE image (MZ) © ©.

e Dg32.exe is responsible to read and interprete the .ith file before to show the main nagscreen. It
use dgpdb to read the file dgperm.db and make sure that we can have access at the content of this
.ith file.

e (Num=53...) After the main nagscreen, when we choose to save the protected file stored inside
our .ith file, dgfs.sys takes the responsibility to access again the .ith file and perform the extraction
of the Foo.txt file and save it inside vault.dgv file.

e So...two are the modules that perfom reading operation on our Foo.ith file: dg32.exe and dgfs.sys.
Dg32.exe performs a reading and checking task...and if we are ‘good guys’ it decides to give us a
chance to save (open) the file...showing the main nagscreen. Dgfs.sys read the file and build the
118h bytes block (see part 1) inside the vault.dgv file and then write our Foo.txt file inside the
same vault.dgv .

e Two are the ‘key’ reading operations in the log info : Num=4 and Num=53. Why ? Simple...both
are the first access that each module (dg32.exe and dgfs.sys) perform on the .ith file and both
accessing start to read the 4 bytes at offset 511h (InTether marker) after these first accessing both
modules start a sequence of reading accesses at the same offsets, with the only difference that
dg32.exe performs some reading access two or three times but always at the same offsets...so the
reading offset in dg32.exe are read in dgfs.sys too. In more these offsets start from the higher and
goes to the lower , basically from the end of the file to the beginning. Every access start at 4F9 (we
can exclude the 511h offset, which we know it’s a marker so a module has no need to read it more
than one time) for ex. to read at the offset 118h, dg32.exe (or dgfs.sys) start to read at 4F9 and
goes down passing always for the same offsets.

So...... what this means is simple...a module that want to read a specific information inside an .ith
file it need to pass trough all blocks of information that follow the information requested, this
because the footer (that we have identified in the binary image of .ith file), doesn’t have an idea
where each information is stored inside the file are...

e (Num=62) This reading operation is quite suspicious, it reads 0Ch bytes (12d bytes) which are
exactly the size of our Foo.txt file. But even if we are sure that this is our file...the offset 130h is
valid only for Foo.ith file, for another .ith file this offset will be differente, the reason is explained
in previous point...there is nothing inside an .ith file that tell at which offset there is a specific
information but all information are in a sequence!

e Often the number of bytes read is 18h. This is an important clue because we know that the footer
has no idea where each information are inside the .ith file so we can suppose something like this:
The 18h bytes are the size of some information, or 18h bytes are the size of an header for each
information stored inside the file.

Ok now we have enough clues to start a ‘live’ reversing session. What we need it’s another .ith file...so we
create another text file Foo2.txt and we protect it. Then we just run it like before and we skip the
IRP_MJ READ operations until we find the first read operation on Foo2.ith file performed by dgfs.sys

!!! Keep in mind that in the following chunks of code all virtual addresses are in the system address
space and may be different from your machine. In more all encrypted values may be different too,
due to random encryption seeds. !!!

We step until we return in dgfs.sys and we find the routine to perform every read operations:

BC1FO09B6 call ntoskrnl!ZwReadFile
test eax,eax
jge BC1lF09C4
XOor eax,eax
jmp BC1F09DS8
mov ecx, [ebp-0C]

cmp ecx, [ebp+14] ; Has been read the right bytes number ?
jz BC1F09D3 ; yes

push 01

pop eax

BC1F09D3 mov edx, [ebp+18]

mov [edx],ecx
BC1F09D8 leave
ret 0014

We return from this routine here:

BC1E8199 call BC1F098C ; read from Foo2.ith (log num=54)
; Offset = 511h
; Size = 4

[Da]c3]B2]al]

test eax,eax
push esi
jnz BClE81BA ; read was ok, go on

BClE81BA call BC1F0COO ; call ZwClose to close the filehandle
cmp dword ptr[ebp-08],A1B2C3D4 ; check .ith marker
Jjz BC1E81DD ; yes it’s a valid .ith file, go on

BC1E81DD push dword ptr
push dword ptr
push dword ptr [ebp+0C
push dword ptr [ebp+08
call BC1lE7ADS ; create Foo2.txt empty

[ebp+14]
[ebp+10]
[]
[]

BC1lE67DB push 18
call BClFOEl6 ; allocate a 18h bytes buffer

BClE6814 lea ecx, [ebp-30]

push ecx

push 18

push eax

push dword ptr [ebp-28]

push dword ptr [ebp-10]

call BC1F098C ; read from Foo2.ith (log num=55)
; Offset = 4F%h
; Size = 18h

00 [ooJooJooJooJooJooJooJoaJooJooJoo]ci]os]oo]oo]
00 [ooJooJoo[87]80]s0]8o0

test eax,eax

jz BC1E7957

mov esi, [ebp-28]

push 06

pop ecx

lea edi, [ebp-6C]

repz movsd ; copy 18h bytes in another buffer

cmp dword ptr[ebp-58],80808087 ; check in 18h bytes read if
; last dword is 80808087

o0 [ooJooJooJooJooJooJooJoaJooJooJoo[ci]os]oo]oo]
00 [ooJooJoo[s87]so]so]so0

jnz BClE7957
mov esi, 00001048

push esi

call BC1lFOElb6 ; allocate a 1048h buffer (FF3D2000)
push esi

mov [ebp-34],eax

call BClFOEl6 ; allocate a second 1048h buffer

; (FF3D0000)

cmp dword ptr[ebp-60],00000678 ; check in 18h bytes read if the

; fourth dword is ‘above’ 678h

00 | oo]oofoo|oo]oofoo]oo oafooJoofoofci]os]|oo]oo]
00 | 00O [0O | 00|87] 80| 80(80
ja BClE65AC
BC1lEG65AC mov eax, [ebp-64] ; eax = third dword in 18h bytes read
00 | oo]oofoo|oo]oofloo]oofoafooJoofoofci]os]|oo]oo]
00 | 00O [0O | 00|87] 80| 80(80
mov [ebp-18],ebx
sub [ebp+08],eax ; [ebp+08] = last offset read in .ith
; file. Sub 04 to generate the next
; offset 4F5h
cmp [ebp+t14],ebx
jz BClE6962
BC1lE6962 lea ecx, [ebp-30]
push ecx
push eax
push dword ptr [ebp+08]
lea eax, [ebp-18]
push eax
push dword ptr [ebp-10]
call BC1F098C ; read from Foo2.ith (log num=56)
; Offset = 4F5h
; Size = 4
[c5] oo]oo0]oo0|
test eax,eax
jz BC1E7957
mov eax, [ebp-64] ; eax = third dword in 18h bytes read
00| oo]oofoo|oo]oofoo]oofoafooJoofoofci]os]|oo]oo]
00 | 00O [0O | 00| 87|80 80(80

push
add

pop
XOor
lea
repz
stosb
mov
or
imul
add

0A
[ebpt08],eax

ecx
eax,eax

edi, [ebp-010C]
stosd

edi, [ebp-18]
ecx, -1

edi,edi, 2%h
edi,BC1F1740

; update the reading offset in Foo2.ith
; 4F5h + 4 = 4F9h

; prepare 28h (0A*4) bytes buffer clean
; null termined 2 ©
; edi = 000000C5 (read from .ith before)

; 000000C5 * 29h = 00001F8Dh
; BC1F1740 + 00001F8D = BC1F36CD =
; offset in dgfs data section

BCI1F1740 is an offset inside dgfs data section, which is buffer that store a series of 28h bytes

alphanumeric strings (null terminated). The value read from ith file is used like an index in this buffer to
take a 28h bytes alphanumeric string. This string should be used to generate some kind of key to decrypt
something else...but lets go on...

XOor eax,eax
repnz scasb

not ecx ;
sub edi,ecx ;
lea edx, [ebp-010C]

mov eax,ecx

mov esi,edi

mov edi,edx

shr ecx,2

repz movsd ;
mov ecx,eax

lea eax, [ebp-010C]

push eax

and ecx,3

lea eax, [ebp-50]

repz movsb

push eax

call ntoskrl!RtlInitAnsiString ;

movzx eax,word ptr[ebp-50]

push eax

mov eax, [BC21AA20]
push dword ptr [ebp-4C]
push dword ptr [ebp-14]
call [eax+14]

’

’

’
’
’

’

scan the alphanumeric string until
find the end (00)

size of the string (2%9h with 00 byte)
edi = point start of this string

copy the 28h bytes string in the
previous allocated buffer

Init the string in an ansi string
variable

size of the string (28h)

pointer to the 28h bytes string buffer
pointer to the 1048h bytes buffer
(FF3D0000)

call in dgcrypt.sys

Ok a break a second!...the above lines of code smell of a ‘creating decryption key’ routine ©.

The selected alphanumeric string (28h bytes) is passed as a parameter to dgcrypt.sys routine , with a pointer
at one of the previous allocated 1048h bytes buffer, ...so what we need to check carefull is what happen
inside dgcrypt now...so lets step in this call [eax+14]

BC5E12B6 push ebp

mov ebp,esp

push ebx

push esi

push dword ptr [eax+10]

mov esi, [eax+0C]

xor ebx,ebx

push esi

push dword ptr [eax+08]

call BC5E11B6

cmp [eax+10], ebx

jle BCS5E12DB

mov al, [esi]

mov ecx, [eax+10]
BC5E12D6 and Dbl,al

dec ecx

jnz BCS5E12D6
BC5E12DB movzx edx,bl

pop esi

pop ebx

pop ebp

ret 000C

’

’

’

pointer 28h bytes string

pointer 1048h bytes buffer
fill the 1048 bytes buffer

A simple routine with a call BC5E11B6 that fills our 1048h bytes buffer. So step in...©

BC5E11B6

BC5E11CD

push
mov
push
push
mov
push
push
lea
XOor
mov
mov

add
mov

mov

mov

mov

mov

mov

mov

add
dec
jnz

ebp

ebp, esp

ecx

ebx

ebx, [eax+08]

esi

edi

eax, [ebx+00000800]
ecx,ecx

edx, 100

esi, [ecx+BC5E4760]

ecx,4
[eax+FFFFF800],esi

esi, [ecx+BC5E4B65]

[eax-0400],esi

esi, [ecx+BC5E4F5C]

[eax],esi

esi, [ecx+BC5E535C]

[eax+0400],esi

eax, 4
edx
BC5E11CD

’

’

pointer 1048h bytes buffer (FF3D0000)

eax = FF3D0800

BC5E4760 is an offset inside
dgcrypt.sys data section and it is a
table. It just picks up a dword at
each cycle of this loop.

prepare index for the next cycle
copy the picked up dword in 1048h
bytes buffer (FF3DO000-FF3DO3FF) .
BC5E4B65 is an offset inside
dgcrypt.sys data section and it is a
table. It just picks up a dword at
each cycle of this loop.

copy the picked up dword in 1048h
bytes buffer (FF3D0400-FF3DO7FF) .
BCS5E4F5C is an offset inside
dgcrypt.sys data section and it is a
table. It just picks up a dword at
each cycle of this loop.

copy the picked up dword in 1048h
bytes buffer (FF3D0800-FF3DOBFF) .
BCS5ES35C is an offset inside
dgcrypt.sys data section and it is a
table. It just picks up a dword at
each cycle of this loop.

copy the picked up dword in 1048h
bytes buffer (FF3DOCOO-FF3DOFFF) .
inc index in 1048h bytes buffer

Has been filled 100h dword
no yet, next cycle

(*4) 27

Ok in this first loop the 1048h bytes buffer is “virtualy’ splitted in 4 block of 400h bytes each. At each loop
four buffer in the data section of dgerypt.sys are used as container to pick up 4 dwords and copy them in the
the 400h blocks. After 100h cycle, 1000h bytes of 1048h bytes buffer are filled. Lets go on...

BC5E1218

BC5E1221

BC5E123B

push
lea
pop
XOr
mov
mov
repz

XOor
mov
XOor
mov
mov

12

edx, [ebx+000001000]
esi

eax,eax

ecx,esi

edi, edx

stosb

ecx,ecx
[ebp-04],esi
eax,eax

dword ptr
edi, [ebp+0C]

movsx esi,cx

shl

movsx esi,byte ptrledi+esi]

or
inc

eax, 08

eax,esi
ecx

movsx esi,cx

cmp
jl

XOor
dec

esi, [ebp+10]
BC5E123B
ecx,ecx

dword ptr [ebp+08]

’

’

[ebp+08],00000004 ;

’

’

’

’

edx = FF3D1000

clean 12h bytes in 1048h bytes buffer
FF3D1000-FF3D10012
Init a counter (12h)

Init a counter (4)
edi = pointer string buffer

reverse the dword taken from the

string buffer
take a byte from the string buffer

Has been taken 4 bytes ?°?

jnz
XOor

add
dec
jnz

BC5E1218
[edx],eax

edx, 4
dword ptr [ebp-04]
BC5E1218

not yet, next cycle

xor dwords from FFD31000 with the
reversed dwords (eax) generated in
loop above.

inc pointer in FFD31000

Has been processed 12h dword ?7?
not yet, restart the loop above

Ok...in this second loop dgcrypt fills the remaining 48h bytes from FFD31000 to FD31047 and it uses the
28h bytes string passed by dgfs.sys. It takes 4 bytes in each cycle and it reverse them to build a dword, then
it use the dword in a xor operation with the dword in the range FFD31000 to FD31047.

So now the 1048h bytes buffer is full but it’s not ready to be used yet...lets check ...

and
and
push
lea
pop
BC5E125B lea
push
lea
push
push
call
mov
mov

mov
mov

add

dec
jnz

-2 We

dword ptr [ebp+08],00
dword ptr [ebp+0c],00
09

esi, [ebx+00001004]
edi

eax, [ebp+08]

eax

eax, [ebp+0C]

eax

ebx

BC5E10FA

eax, [ebp+08]
[esi-04],eax

eax, [ebp+0C]
[esi],eax

esi,8

edi
BC5E125B

go on with this part

esi = FFD31004
counter (09)
pointer value A (0 in first cycle)

pointer value B (0 in first cycle)
ebx =start 1048h bytes buffer FFD30000

eax = value A processed

save the value A processed in the
range FFD31000-FFD310047

eax = value B processed

save the value A processed in the
range FFD31000-FFD310047

inc index in the 48h bytes

dec counter

processed all 48h bytes ?? not yet
next cycle. With A and B update too

of code at page 12

Ok stop here, we need to see what happen inside this last call because it performs some other operations on
the 48bytes at FFD31000, in more the 2 values that this function receive gives us a clue...it possible that it
will be used like a decryption routine too...so I have named these two values: A and B, which are both 0 at

the first call in this loop.

BCS5E10FA push
mov
push
mov
mov
push
push
mov
mov
mov
push
lea
mov

BC5E111B XOor

push
push
mov
call
XOr
mov
add

dec
jnz

ebp

ebp, esp

ecx

eax, [ebp+0C]
ecx, [ebp+10]
ebx

esi

esi, [ebp+08]
eax, [eax]
ebx, [ecx]
edi

edi, [esi+00001000]

dword ptr [ebp+08],0000

eax, [edi]

eax
esi
[ebp-04],eax
BC5E10AA
eax, edx

ebx, [ebp-04]
edi, 04

dword ptr[ebp+08]
BC5E111B

’

’
’

’

eax
ecx

pointer value A
pointer value B

esi=start 1048h bytes buffer FF3D1000
eax = value A
ebx = value B

esi FFD31000

0010 ; Init counter (10h)

value A xored with dword in the range
FFD31000-FFD31047 = MAGIC
MAGIC

save MAGIC

eax = (New)MAGIC

ebx = (01d)MAGIC

inc pointer in the range FFD3D1000-
FFD31047

dec counter

mov edx, [ebp+0C]

mov ecx,eax

mov eax, [esi+00001040]
pop edi

XOr eax,ecx

mov ecx, [esi+00001044]
xXor ecx,ebx

mov [edx],ecx

mov ecx, [ebp+10]

pop ebx

mov [ecx],eax

leave

ret

edx = pointer value A

ecx = FINAL (New) MAGIC

eax = prelast dword in 1048h bytes
buffer = LOSTDWORD1

eax = (FINAL (New) MAGIC xor
LOSTDWORD1) = value B decrypted

ecx = last dword in the 1048h bytes
buffer = LOSTDWORD2

eax = (FINAL (0ld) MAGIC xor
LOSTDWORD1) = value A decrypted
now value A is replaced with itself
decrypted

pointer value B

now value B is replaced with itself
decrypted

Ok briefly, the routine above is nothing else that a decryption routine, but in this situation is used to
generate 48h bytes to put in the 1048h bytes buffer in the range FFD31000-FF3D1047. Basically the two
pointer that this routine receives are pointers to two dword values (A and B) to decrypt. At the first calling
these values are 0 which bring the routine (after a loop of 10h times) to generate two dwords which are the
entry values ‘decrypted’. When this routine returns, these decrypted values replace the old two values A
and B, which are resent down at this decryption routine to generate other two values A and B.

How you can see the decrypted values A and B are copy in the buffer in the last 48h bytes.

Anyway the code above is more clear than my words...just a thing we have to check in the above
routine....the call BC5E10AA. This routine is responsable to generate a New MAGIC value...so surely
it uses the current MAGIC and the 1048h bytes buffer...but to be sure just check it :

BCS5E10AA mov ecx, [esp+08]
mov eax,000000FF
mov dl,cl
push ebx
and edx,eax
shr ecx,8
mov esi,edx
mov cl,dl
shr ecx,8
mov ebx,ecx
and edx,eax
push edi
mov edi,edx
mov edx, [esp+10]
and ecx,eax
shr ebx,8
and ebx,eax
mov eax, [ebx*4+edx]
add eax, [ecx*4+edx+400]
movzx ecx,di
pop edi
Xor eax, [ecx*4+edx+800]

movzx ecx,si

pop esi
pop ebx
add eax, [ecx*4+edx+C00]

’

’

ecx = MAGIC

edx = low byte of MAGIC

shift right to have a new low byte
esi = first byte of MAGIC

take the new low byte of MAGIC
shift right to have a new low byte

ebx = 2 MAGIC high bytes

edi = second byte of MAGIC

start 1048h bytes buffer FF3D0000
ecx = third byte of MAGIC

ebx = fourth (high) byte of MAGIC

take dword in 1048h bytes buffer
another dword from 1048h bytes buffer

ecx = second byte of MAGIC

eax = eax xor dword from 1048h bytes
buffer

ecx = first byte of MAGIC

eax = (New)MAGIC = eax xor dword from

1048h bytes buffer.

...Indeed...it use each bytes of the dword MAGIC to pick up dwords in the 1048h bytes buffer and build a

new MAGIC value. Easy and clear ©.

Ok now we can return at the code suspended at page 10:

> We go on with the part of code suspended at page 10

mov esi,ebx ; esil =start 1048h bytes buffer FFD30000
mov dword ptr [esp+10],00000004 ; Init counter (4)
BC5E1283 mov edi, 00000080 ; Init counter (80h)
BC5E1288 lea eax, [esp+0C] ; eax = pointer value A
push eax
lea eax, [esp+08] ; eax = pointer value B
push eax
push ebx
call BCS5E10FA
mov eax, [ebp+08] ; eax = value A processed
mov [esi],eax ; save the value A processed in the
; 1048h bytes buffer
mov eax, [ebp+0C] ; eax = value B processed
mov [esi+04],eax ; save the value A processed in the
; 1048h bytes buffer
add esi,8 ; inc index in the 1048h bytes buffer
dec edi ; dec counter (80h)
jnz BC5E1288 ; processed all 80h (dwords) bytes 2?7

; not yet, next cycle. With A and B
; update too

dec dword ptr [ebp+10] ; dec counter (4)

jnz BC5LSE1283 ; process (80h dwords)*4 27
; not yet next 80h loop

pop edi

pop esi

XOr eax,eax

pop ebx

leave

ret

This is a second loop similar at the previous (at page 10) the only difference here is that it process 80h*4
dwords (800h bytes) from the start of the 1048h bytes buffer.

With this last calculation dgcrypt has finished to fill the 1048h bytes buffer, which is ready to use in
dgfs.sys.

So we return in dgfs.sys code just after the call [eax+14] that we have seen at page 8...cool...lets go
on now from there because now dgfs access again at our Foo2.ith file:

BC1lE69E2 call [eax+14] ; call in dgcrypt.sys to fill the 1048h
; bytes buffer (FF3D0000)
BC1lEG69FC movzx eax,word ptr[ebp-50] ; eax = size ansi string (28h)
push eax
mov eax, [BC21AA20]
push dword ptr [ebp-4C] ; pointer to ansi string
push dword ptr [ebp-34] ; pointer at the start of the second
; 1048h bytes buffer (FF3D2000)
call [eax+14] ; call in dgcrypt.sys to fill the second

; 1048h bytes buffer (FF3D2000)

In the lines above dgfs.sys calls again dgcrypt to fill the second 1048h bytes buffer, in the same way as
before...then...

BC1lEG6A49 mov eax, [ebp-58] ; eax = last dword of 18h bytes read =
; 80808087h

00 [ooJooJooJooJooJooJooJoaJooJooJoo]ci]os]oo]oo]
00 [ooJooJoo[87]so]so]so0

and eax, 7F7F7FTE ; eax = 5
cmp eax, 10 ; the last dword is like an ID to

; 1dentify the type of the 18h block
ja BC1lE766D

movax eax, byte ptr[eax+BCLlE7A5C] ; this ID is used like an index

mov

; 1n a jmp table.

BClEG6AGS eax, [ebp-5C] ; eax = third dword in 18h bytes block
00 [oo]oofoo|oo]oofoo]oofoafooJoofoofci]os]|oo]oo]
00 | 00 | OO | OO0 [87 |80 | 80| 80
mov ecx, [ebp-64] ; eax = fifth dword in 18h bytes block
00| oo]oofoo|oo]oofoo]oo[oafoo]oofoofci]os]|oo]oo]
00 | 00 | OO | OO [87 |80 | 80| 80
add eax,ecx ; add the 2 dwords = 4 + 0 = 4
sub [ebp+t08],eax ; sub the value at the offset of the
; last reading in .ith 4F9-(4+0) = 4F5
Jmp BClE766D
BClE766D sub dword ptr[ebp+08],18 ; sub 18h bytes (block size) at the
; offset in .ith. 4F5-18=4DD = new
; offset in .ith
lea eax, [ebp-30]
push eax
push 18
push dword ptr [ebp+08]
push dword ptr [ebp-28]
push dword ptr [ebp-10]
call BClE794A ; read from Foo2.ith (log num=56)
; Offset = 4DDh
; Size = 18h
s2 | p8|Eo[48[5a]F3[2B[20]50[E6[a7]calac]EL]99]AcC]
AE (Al | 44 | CA | B2 | 2F | 30 | OB
test eax,eax
Jjz BC1lE794A
mov esi, [ebp-28] ; esi = pointer 18h bytes read
mov eax, [BC21AA20]
push 03
push esi
push dword ptr [ebp-14] ; pointer 1048h bytes buffer FF3D0000
call [eax+24] ; call dgcrypt.sys to decrypt the 18h
; bytes block read (03*2 dwords).
00 oo]oofor]oo]oofoo]oo oo ooJoofoofci]os]|oo]oo]
20 [00 [OO [OO | 85| 80 | 80 | 80
push 06
lea edi, [ebp-6C]
pop ecx
repz movsd ; copy the 18h bytes block decrypted in
; another buffer.
cmp dword ptr [ebp-5B],80808081 ; check in 18h bytes decrypted if
; last dword is 80808081.
00| oo]oofoo|o1]oofoo]oo oo ooJoofoofci]os]|oo]oo]
20 [00 [00O [OO0 | 85| 80 | 80 | 80

jnz

BClE6A49

mov

BC1lE6A49 eax, [ebp-58] ; eax = last dword of 18h bytes read =
; 80808085h
00| oo]oofoo|o1]oofoo]oo oo ooJoofoofci]os]|oo]oo]
20 [00 [00O [00O | 85| 80 | 80 | 80
and eax, 7F7FT7FTE ; eax = 3
cmp eax, 10 ; the last dword is like a ID to
; identify the type of the 18h block
ja BC1lE766D
movax eax, byte ptr[eax+BClETA74] this ID is used like an index
; 1n a jmp table.
Jjmp [eax*4+BC1E7AS5C]
push FO ; —10h
pop eax ; eax = -10h
sub eax, [ebp-64] ; eax = -10h - 0
add [ebpt+08],eax ; add -10h at the previous offset
; 4DD + (-10) = 4CD new offset in .ith
cmp [ebpt14],ebx
jz BCLE6BFF
BC1lE6BFF lea eax, [ebp-30]
push eax
push 10
push dword ptr [ebp-30]
lea eax, [ebp-00EO0]
push eax
push dword ptr [ebp-10]
call BClE794A ; read from Foo2.ith (log num=57)
; Offset = 4CDh
; Size = 10h
[33]29[4E 197811 |FFr|47]6c|[n2]n6[or][BC[4F [67] 7F]
test eax,eax
lea eax, [ebp-00EOQ]
push 02
push esi
push dword ptr [ebp-14] ; pointer 1048h bytes buffer FF3D0000
call [eax+24] ; call dgcrypt.sys to decrypt the 10h
; bytes read (02*2 dwords) .
|74 a1 [a3]1c|o8 |4 [Ba[70|DE |2aB [03 [BD|FE| 6F | AF [17 |
push 10
mov dword ptr [ebp-00A4],00000001
pop eax ; eax = 10h
sub eax, [ebp-5C] ; eax = 10h - 20h (fifth dword in the
; 18h bytes block) = -10h
add [ebp+08],eax ; 4CD 4+ (-10h) = 4BD new offset in .ith
Jmp BClE766D
BClE766D sub dword ptr[ebp+08],18 ; sub 18h bytes (block size) at the
; offset in .ith. 4BD-18=4A5 = new
; offset in .ith
lea eax, [ebp-30]
push eax
push 18
push dword ptr [ebp+08]
push dword ptr [ebp-28]
push dword ptr [ebp-10]

call BClE794A ; read from Foo2.ith (log num=58)
; Offset = 4A5h
; Size = 18h

5F | D8 |E0 [48 | 5a|F3 | 2B |20 [9E [Ba |20 |84 [66]41]96]2n|
El [42]|56[co[9op| 9D | 9E | 6C

test eax,eax
jz BC1E794A

mov esi, [ebp-28] ; esi = pointer 18h bytes read

mov eax, [BC21AA20]

push 03

push esi

push dword ptr [ebp-14] ; pointer 1048h bytes buffer FF3D0000
call [eaxt24] ; call dgcrypt.sys to decrypt the 18h

; bytes block read (03*2 dwords).

o0 JooJooJooJor]JooJooJooJoi[ooJooJoo[ci]os]oo]oo]
50 [03]oofoo[8a]8o]80]80

push 06

lea edi, [ebp-6C]

pop ecx

repz movsd ; copy the 18h bytes block decrypted in
; another buffer.

cmp dword ptr [ebp-5B],80808081 ; check in 18h bytes decrypted if
; last dword is 80808081.

o0 [ooJooJooJor]JooJooJooJoi[ooJooJoo]ci]os]oo]oo]
50 [03]oofoo[s8a]so]so]so

jnz BClE6A49

BC1lE6A49 mov eax, [ebp-58] ; eax = last dword of 18h bytes read =
; 80808084h

00| oo]oofoo|o1]oofoo]oo oo ooJoofoofci]os]|oo]oo]
20JooJooJoo]sa]so]so]so

and eax, 7F7FTFTE ; eax = 2
cmp eax, 10 ; the last dword is like a ID to

; identify the type of the 18h block
ja BC1lE766D

movax eax, byte ptr[eax+BClE7A5C] ; this ID is used like an index
; 1n a jmp table.
Jmp [eax*4+BC1E7AS5C]

mov esi, 350

push esi

call BClFOEl6 ; allocate a 350h bytes buffer

mov eax, [ebp-64] ; eax = third dword in 18h byte block
; 00000001

sub [ebp+08],eax ; 4A5 - 1 = 4A4 new offset in .ith

lea eax, [ebp-30]

push eax

push dword ptr [ebp-64]
push dword ptr [ebp+08]
push edi

push dword ptr [ebp-10]

call

sub

lea

push
push
push
push
push
call

BC1E794A ; read from Foo2.ith (log num=59)
; Offset = 4A4h

; Size =1

[ebp+08],esi ; 4F4 - 350 (fifth dword in 18h byte
; block) = 154 new offset in .ith

ecx, [ebp-30]

ecx

esi

dword ptr [ebp+08]

eax

dword ptr [ebp-10]

BC1E794A ; read from Foo2.ith (log num=60)

; Offset = 154h
; Size = 350

1F

08 |94 | 8E|E3|2E|[1F | 8B | 7C | 70 | BE [33 |CE | C4 | AD | 06

4E

9D [3B | CO [16 | 41 | B6 | F6 | 4E [9D | 3B [CO [16 | 41 | B6 | F6

test
jz
mov
mov
push
push
push
call

eax,eax

BC1lE794A

esi, [ebp-04] ; esi = pointer 18h bytes read

eax, [BC21AA20]

6A

esi

dword ptr [ebp-34] ; pointer 1048h bytes buffer FF3D0000

[eax+24] ; call dgcrypt.sys to decrypt the 350h
; bytes read (6A*2 dwords).

01

00 | 00| 00|43 | 3A([5C |46 | 6F | 6F |32 [2E| 74|78 | 74| 00

C : \ F o o 2 . t X t

00

00 | 00| 00O | 00] OO |00 | 00| QO |0O0]0O0(fO00C]|00]00]|O00]O00

BClE766D

sub

lea

push
push
push
push
push
call

dword ptr[ebp+08],18 ; sub 18h bytes (block size) at the
; offset in .ith. 154-18=13C = new
; offset in .ith

eax, [ebp-30]

eax

18

dword ptr [ebp+08]

dword ptr [ebp-28]

dword ptr [ebp-10]

BC1E794A ; read from Foo2.ith (log num=61)
; Offset = 13Ch
; Size = 18h

S5F

pg [E0 |48 [sa[F3[2B]20[50[E6[Aa7[ca]ac|El]|99]AcC]

61

48 | B9 [F1 | F1 [C3 | 31 | DB

test
jz
mov
mov
push
push
push

eax,eax
BC1lE794A

esi, [ebp-28] ; esi = pointer 18h bytes read

eax, [BC21AA20]

03

esi

dword ptr [ebp-14] ; pointer 1048h bytes buffer FF3D0000

BClE6A49

call [eaxt24] ; call dgcrypt.sys to decrypt the 18h
; bytes block read (03*2 dwords).
o0 [ooJooJooJorJooJooJooJooJooJooJoo[ci]os]oo]oo]
0C | 00 | 00O [00| 83|80] 80 | 80
push 06
lea edi, [ebp-6C]
pop ecx
repz movsd ; copy the 18h bytes block decrypted in
; another buffer.
cmp dword ptr [ebp-5B],80808081 ; check in 18h bytes decrypted if
; last dword is 80808081.
o0 JooJooJooJorJooJooJooJooJooJooJoo[ci]os]oo]oo]
0C | 00 | 00 [00 | 83 |80 | 80 | 80
jnz BCLlE6A49
mov eax, [ebp-58] ; eax = last dword of 18h bytes read =
; 80808083h
00| oo]oofoo|o1]oofoo]oo oo oo]oofoofci]os]|oo]oo]
0C | 00 | 00|00 |83 |80 80]| 80
and eax, 7F7F7FTE ; eax = 3
cmp eax, 10 ; the last dword is like a ID to
; identify the type of the 18h block
ja BC1lE766D

movax eax,

’

byte ptr[eax+BClET7A74] ;

this ID is used like an index

in a jmp table.

Jmp [eax*4+BC1E7A5C]

mov ecx, [ebp-5C] ; ecx = third dword in 18h bytes block
; 00000000

mov edx, [ebp-64] ; ecx = third dword in 18h bytes block
; 0000000C

sub [ebp+08],edx ; 13C - 0C = 130 new offset in .ith

lea eax, [ebp-30]

push eax

push dword ptr [ebp-64]

push dword ptr [ebp+08]

push edi

push dword ptr [ebp-10]

call BCIlE794A ; read from Foo2.ith (log num=62)
; Offset = 130h
; Size = 0Ch

[Fi]ss[ap|[Fe|BB|4c [D031 [72]6C]64]21]

mov

eax,esi ; eax = 0C num bytes read
shr eax,3 ; eax = 0C / 8 =1
push eax
mov eax, [BC21AA20]
push dword ptr [ebp-04] ; pointer 0C bytes to decrypt
push dword ptr [ebp-14] ; pointer 1048h bytes buffer FF3D0000
call [eaxt24] ; call dgcrypt.sys to decrypt the 0Ch
; bytes read
48 | 65 [6C [6C | 6F [20| 77 | 6F | 72 | 6C | 64 | 21

W o r 1 d !

Yeppal!l... got it...our clean text is in the buffer above...how we have supposed when we have analysed
the logged reading operations some pages above, the read operation number 62 read 0Ch bytes, which are
our text encrypted.

So...just we need to put all together...to have a complete picture of how is made an .ith file...

An .ith file is marked in the last four bytes with D4C3B2A1, which probably defined the version too. The
rest of the .ith file is made of blocks of information, each information block is made of an header (18h
bytes) and a body (data). But lets see an example :

Data [[C5] 00 00] 00
Heade{ 00 |00]oofoo]|oo]oofoo]oo0] | | | [c1]os|oo]oo0|

[oofooJoofJoof /[of o] r]

The last dword in the 18h bytes header block is some kind of “ID”. It’s used has an index
in a jmp table, so each block is treath in the specific way inside dg32.exe/dgfs.sys. The
first information block (basically the the first to read just before the dword marker) is the
87808080 (in the example above). This information block is not encrypted because the
data that it store (4 bytes) are used to generate the decryption key (1048h bytes buffer) to
decrypt the others information blocks in the .ith file. Other type of blocks are:

85808080 10h+10h data (we haven’t analysed)
84808080 Path_FileName and others data

83808080 Original File

82808080 We haven’t analysed

81808080 We haven’t analysed, It mark the end of the

information blocks too.

00000000 (THIS IS MY PERSONAL INTERPRETATION — WILL BE GREAT IF
INFRAWORKS GUYS CAN CONFIRM OR CORRECT MY DEDUCTION.
THANKYS)
The fifth dword in the 18h bytes block header is the size of the encrypted data that
precede the header. In this information block the value is 00000000, no encrypted data
here.

(THIS IS MY PERSONAL INTERPRETATION — WILL BE GREAT IF
INFRAWORKS GUYS CAN CONFIRM OR CORRECT MY DEDUCTION.
THANKS)

The third dword in the 18h bytes block header is the size of the not-encrypted data that
precede the header. In this information block the value is 00000004, so 4 bytes of not-
encrypted data (000000C5).

000000C5 The data of the information block.

The meaning of the others fields are off-topic for this tutorial, which is already long enough...but now you
easly study any part of an .ith file and experiment others protection options too.

I think that I can close this second part here...now it’s a piece a of cake write a simple program to automate
the ‘extraction’ of our Foo2.txt file...©.

Don’t limit yourself to crack a protection....reverse it ...Be a curious reverser...crack a protection is
not the final goal for a reverser, but the excuse to start ...then you can free your brain.

A BIG THANKS TO :

InTether developing group, for the funny nights that I have spent on their protection.
It’s been the first No-boring reversing session after a long period. All my respect.
...see ya in the next tut.

MaV3RiCk

maverickluke@hotmail.com

mailto:maverickluke@hotmail.com

	Num
	File
	Offset (hex)
	Size (hex)
	Caller
	Num
	File
	Offset
	Size
	Caller
	Num
	File
	Offset
	Size
	Caller
	Num
	File
	Offset
	Size
	Caller

